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1. Preliminaries 
A. Introduction 

Chemistry is suffused by molecular orbital (MO) concepts. 
On a theoretical level, these concepts may be either highly so- 
phisticated or blatantly heuristic. 

The MO concept, being an approximation, runs into certain 
difficulties. These difficulties occur in greatest profusion at the 
interface of theory and experiment. It turns out that experiment, 
in the form of electronic and electron spectros~opy,~-~ provides 
direct information for the many-electron, ground and excited 
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states, and not for the one-electron molecular orbitals. In any 
event, the relationship of the experimental state information to 
the conceptual orbital considerations has proceeded apace, 
often in very qualitative and empirical ways. And, as a result, one 
finds oneself in the odd situation of possessing considerable 
insight, yet suffering from a great deal of confusion. 

This essay is an attempt to resolve some of that confusion. 
It is excerpted from a series of lectures on photoelectron 
spectroscopy which we presented at LSU in the fall of 1975. In 
the course of these lectures, we ran into some troubles4 In brief, 
we were unable to refer our students to any comprehensive, yet 
comprehensible sources which dealt with the following: 

(i) Chemistry, particularly organic chemistry is more and more 
dependent on MO concepts. One of the more pervasive of these, 
namely orbital interactions, is usually exemplified quite heavily 
but is rarely discussed in terms of any meaningful MO theory. 

(ii) The various electronic orbital types are labeled, in self- 
evident terminology and in the approximate order of decreasing 
binding energy: “core”, “valence”, and “Rydberg”. The inter- 
relations of these types of orbitals are rarely, if ever, specified. 
Nor is the manner of their evolution from the same energy op- 
erator ever delineated. 

(iii) Many significant theorems, Koopmans’, for example, are 
derived in passing (so to speak), not derived at all, or even de- 
rived wrongly. Such observations, coupled with student questions 
and frustrations, provided the goad for this essay. 

Our aim is to relate orbital properties to state properties in a 
way which is useful and meaningful. Consequently, we begin with 
the general manyelectron, many-nuclei problem. While retaining 
as much rigor as is warranted, we proceed to a discussion of 
certain trenchant theorems, their derivations, and the approxi- 
mations inherent in their use. In this connection, we pay con- 
siderable attention to Koopmans’ theorem, to its extension to 
core ionization events, and to its utility in discussing nonionizing 
electronic excitations of core, valence, and Rydberg types. Fi- 
nally, we attempt to unify the subject of orbital interactions and, 
in the process, to discern the theoretical content of the intuitive 
concepts in which this area abounds. 

In any attempt as broad as this, some compromise is usually 
required. Thus, we will evade all discussions of computational 
techniques and experimental apparatus, and for the same rea- 
sons: computational and experimental techniques are of interest 
only to the extent that they bear on the orbital concept. 

For the sake of cohesion, we will limit ourselves to molecules 
with closed-shell ground states, and we will restrict ourselves 
to electronic excitation events which are induced by pho- 
t o n ~ . ~  

1. Orbital Classification Scheme 

Orbitals, or electrons, are readily categorized as “core”, 
“valence”, or “Rydberg”. This categorization depends on dif- 
ferences of the binding energies and the spatial extents of the 
orbitals, and is approximate. It is illustrated in Table I. 
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TABLE 1. Various Orbital Regimes 

Binding 
energy Major Minor 
(abso- energy energy 

Orbital lute), contribution contribution Orbital 
regime cm-' (zero-order) (perturbation) extent 

Core 1 l o 8  a Attraction by one particular nucleus Neighboring nuclei; valence Atomic-like; tightly packed around 

Valence 
electrons one particular nucleus; localized 

Bonding 1-5 X "Whole molecule" in nature Delocalized; of same size as 
105 molecule 

Lone pair 5-10 Attraction by one particular nucleus and Remainder of the molecule Localized 
X IO4 

Antibonding 5 4  X "Whole molecule" in nature Delocalized; of same size as 
its complement of core electrons 

(virtual) i o 4  molecule 

104 a point charge potential from spherical symmetry molecular 
Rydberg 5 3  X Attraction by whole molecule acting as Penetration of core; deviation of Atomic-like large; diffuse; hyper- 

a Except lithium, for which IE1, = 0.44 X l o8  crn-l. 

TABLE ti. A Glossary of Notations 

Wave Functions 
the general many-electron wave func- 

the many-electron wave function in the 

a many-electron Slater determinant wave 

a molecular spin orbital 
a molecular (space) orbital 
spin functions for m, = l/z and -'/2, re- 

an atomic spin orbital 
a nuclear wave function 
determinant for the ground configuration 
determinant for a Koopmans' configura- 

tion 
determinant for a singly excited configu- 

ration 
determinant for a doubly excited configu- 

ration 
an optimum virtual molecular spin orbital 

Coordinates 

the space and spin coordinate set for 

the space and spin coordinate set for 

electronic space coordinate set for elec- 

electronic spin coordinate for electron 1 
nuclear sDace coordinate set 

tion 

"fixed-nucleus'' approximation 

function 

spectively. 

electrons 1, 2, . . . 

electron 1 

tron 1 

The core-electron binding energies characterize the atom. 
Thus, when the atom is part of a molecule, the perturbation of 
the core binding energy by all the other atoms in the molecule 
environment rarely exceeds 10%; in fact, it is usually consid- 
erably less. In absolute terms, the perturbation lies in the range 
0.001-0.1 X lo6 cm-'. One could say that the core orbitals are 
so compressed about their specific atomic centers that all 
neighboring atomic centers of the molecule, being quite far 
away, exert only a small perturbative influence. 

On the other extreme are the Rydberg orbitals. The binding 
energy of a Rydberg electron is quite small, usually <3 X lo4 
cm-'. Indeed, the highly excited Rydberg electron behaves as 
a quasi-hydrogenic electron whose binding energy is given by 
P R l ( n " ) * ,  where R is the Rydberg constant, n' is an effective 
principal quantum number, and Z is the charge "seen" by the 
Rydberg electron. One could say that Rydberg orbitals are so 
large spatially that the details of molecular architecture become 

Subscripts and Superscripts 

uration 
a , b , c  , . . . ,  k , / ,m,n  

P ?  u ,  . . . 
A, 0, C, . . . 
i, j ,  . . . 

occupied (spin) orbitals of ground config- 

unoccupied (or virtual) (spin) orbitals 
nuclei or submolecular parts 
electron numbering 
Operators 

general Hamiltonian 
electronic Hamiltonian 
core Hamiltonian; the oneelectron part of 

Fock operator 
Fock operator with spin orbital p, of q0 

deleted 
kinetic energy operator 
permutation operator which interchanges 

general one-electron operator 
general two-electron operator 

coordinates of electrons 1 and 2 

Miscellaneous 
6, = 1 (or zero) for i = j (or i # 1) Kronecker delta 
( ~ / l p / )  = S Pi ' ( l )Pj( l )dXi  
(papbI(1 - P12)/r121~c'~d) 

1 

r12 
= S S  pa* ( l ) 'Pb* (2 ) [pc ( i )~pd2) -  (0~(2)Ppdl)l -dXidXz 

N total number of electrons 
atomic number of atom A 

s total spin quantum number 
Ms component of S along a particular axis 

Z A  

insignificant and merely exert perturbative effects on an other- 
wise hydrogenic electron. 

The valence electrons, for the most part, are intermediate in 
energy and spatial extent. They represent a coupling domain 
which is uniquely molecular. In specific, they are not so tightly 
bound that they can be considered to be "nearly atomic" (i.e., 
core) electrons, nor so weakly bound that they can be supposed 
to be "quasi-hydrogenic" (Le., Rydberg) electrons. As a result, 
it is the valence electrons which pose the most difficult theo- 
retical problem. In fact, if a good discussion of the valence 
electron problem were available, it should be possible, by ap- 
propriate extension or shrinkage of the valence orbitals, to ex- 
tract a pertinent description of the Rydberg electron or core 
electron extremes, respectively. Consequently, we will begin 
our discussion with the valence MO's. 

There is another reason, however, for starting with the valence 
orbitals. The valence orbitals are the "uniquely molecular" or- 
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bitals. For example, they determine chemical bonding charac- 
teristics, molecular structure, and the characteristics of chemical 
reactions. It is not surprising, then, that very many subcategor- 
izations of them exist and that discussions of them are heavily 
laced with empirical and heuristic connotations. The removal 
of these connotations andlor their replacement with theoretically 
valid and empirically useful concepts is another one of the major 
aims of this essay. 

A glossary of the notations used in this work is given in Table 
I I .  

6. The MO Approximation 

independent Schrodinger equation 
One of the aims of quantum chemistry is to solve the time- 

3f(x,R)\k(x,R) = €\k(x,R) (1) 

where 3 is the Hamiltonian operator. Both 3f and \k, as indi- 
cated in Table 11, depend on the coordinates of all nuclei and all 
electrons in the molecule. The goal of this section is to simplify 
the multidimensional problem of eq 1 ,  to reduce it, if possible, 
to one which is dependent on the coordinates of only one elec- 
tron. 

We neglect, for convenience, all relativistic terms in 3f and 
rewrite it as 

%(r,R) = (TA + ZAZB/RAB + Ti + l l r ,  
A A<B i i< j 

- C ZAlriA (2) 
i A  

The terms of eq 2, in order of appearance, describe the kinetic 
energy of the nuclei, the electrostatic repulsion of the nuclei, 
the kinetic energy of the electrons, the electron-electron re- 
pulsion, and the nuclear-electron attraction6 

1. Separation of Nuclear and Electronic Motions 

one of the parts is only weakly dependent on R: 
The first step is to approximate \k(x,R) by a product such that 

\k(x,R) = \k(x;R)Z(R) (3) 

The function \k(x;R), which is dependent on R only in a para- 
metric fashion, is known as the electronic wave function. The 
function E(R) is known as the nuclear wave function. These 
functions are determined by 

3felqedx;R) = EedR)*edx;R) (4) 

3fnE(R) = (5) 
where the Hamiltonian operators, to the exclusion of relativistic 
effects, are given by 

A 

Relative to eq 3, eq 4-7 involve approximations7 such as the 
neglect of various cross terms, e.g., 

This separation into an electronic and a nuclear part is known 
as the Born-Oppenheimer approximation.8 It permits the use 
of several well-known concepts. These are: 

Electronic state. The energy of an electronic state is depen- 
dent on R and this dependence yields the familiar potential en- 
ergy well which governs vibrational motion. 

Equilibrium nuclear geometry. This geometry is defined as 

that which exists at the absolute minimum of the (multidi- 
mensional) potential energy surface EeI(R). 

Electronic energy and vibrational energy. The energy sepa- 
rates into distinct electronic and vibrational parts. 

All these concepts lose validity when eq 3 is not a good ap- 
proximation to the solutions of eq 1. Thus, the Born-Oppen- 
heimer approximation will usually be invalid when the energy 
differences between electronic states are smaller than the vi- 
brational energy increments associable with any of the electronic 
states. In particular, when the electronic states are nonacci- 
dentally degenerate, Jahn-Teller or Renner instabilities8 will 
arise from a coupling of the electronic and vibrational mo- 
tions. 

In a more mechanistic vein, the possibility of a separation into 
distinct nuclear and electronic motions is based on the com- 
paratively larger mass of the nuclei: the electrons have less 
inertia and can adjust their motions, more or less instantaneously, 
to any rearrangement of the nuclear positions. 

2. Independent Particle Approximation 

The electronic wave function \kel(x;R) is still dependent on 
the coordinates of all electrons. If a complete set of orthonormal, 
many-electron wave functions is available, \kel(x;R) can be 
expandedas 

*el(x;R) = $iCi (8) 

( $ i l $ j )  = 6 i j  (9) 

i 

where 

We now investigate such an expansion, the manner of its sim- 
plification, and the nature of the functions $i. 

a. Determinantal Wave Functions 

The Pauli principle dictates that \kel(x;R) must be antisym- 
metric with respect to any interchange of electron coordinates. 
Given the abbreviations 

\kel(x;R) E \kel(x1,x2, . . . ,xi, . . . ;R) E \kel(1,2, . . . ,i, . . . ;R) 

the antisymmetry requirement is 

'Pel( 1,2,3, . . . ,i, . . . ,k, . . . ;R) 
= -'Pel(I,2,3,. . . ,k, . . . , i ,  . . . ;R) (10) 

Since antisymmetry is one of the more unique characteristics 
of determinantal wave functions, one convenient and complete 
set of many electron functions is provided by a set of Slater 
determinants built from a comelete set of spin orbitals (p i ( j ;  

Since the electron-occupancy number of any spin orbital is either 
one or zero, it follows that the number of occupied spin orbitals 
equals the number of electrons. The functions pi depend on the 
coordinates of one electron only; they are termed "spin orbit- 
a l ~ ' ' . ~  If the set of spin orbitals {pi) is complete and, for conve- 
nience, orthonorma1,'O it may be shown that the set of all pos- 
sible determinants, {G i ) ,  which is constructed from these spin 
orbitals is also complete and orthonormal. 
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TABLE 111. A Collection of Pertinent Slater Rulesa 

Overlap 

One-Electron Operators 

Two-Electron Operators 

a For definition of n(/) and Q ( i J ,  see Table I I .  

We now subdivide the set of determinantal wave functions 
in a very specific way. The ground-state configuration,ll q0, is 
obtained by placing the N electrons, one at a time, into the n 
most tightly bound spin orbitals. Singly excited configuration 
functions, $;, are obtained by promoting an electron from the 
Mh to the yth most tightly bound spin orbital. Doubly excited 
configuration functions are generated by the promotion of two 
electrons out of the spin orbitals contained in q0, etc. These 
classes of determinantal functions are defined as 

$0 = I p a ( P b . .  (Fk . . . . . pn( 

$ E =  I ( P a ( P b . . . p p . . . p / . . . ‘ P n l  

= I p a ( P b , . .  p p . .  . v u . .  . pnl (13)  

\ke, = $oco + $ f  c: + c$y + . . . (14)  

The expansion of eq 8 is now rewritten as 

k, I 
*,!J 

k,w 

The expansion of eq 14 is known as the CI (configuration inter- 
action) expansion. This expansion does not contain any ap- 
proximation beyond those of eq 3-5. 

b. The Hartree-Fock Operator 

It would be very convenient if we could choose the set of spin 
orbitals, (p i ) ,  in such a way that, for the ground state, the coef- 
ficient co would be approximately unity and others approximately 
zero. We now inquire into this possibility. In other words, we seek 
that set of spin orbitals, (pa,$&, . . . ,pn), which gives the best 
approximation to the correct electronic wave function of the 
ground state while simultaneously retaining only the first term 
of eq 14. Equivalently, we wish to approximate the many-elec- 
tron wave function \kel(x;R) of the ground state by a single Slater 
determinant. 

The choice of the “best” Slater determinant involves the use 
of the “variation” principle: If the ”best” Slater determinant were 
available, the electronic energy associated with it would be a 
minimum.12 The expectation value of energy for a Slater de- 
terminant is given by Slater’s rules.13 These rules are presented 
in Table 111. These lead to 

kE  occ 

+ C ZAZBIRAB 
A<B 

+ ((Pk(l)(P/(2)1(1 - p12)/r121(Pk(1)p/(2)) (15)  
k< / E  occ 

where the summation indices, k or I, are members of the set of 
spin orbitals which are occupied in the configurational function 
of interest. The permutation operator P12 is defined as 

and the core Hamiltonian, Bc(l), is defined by 

%‘(I) = - ZAIriA (17)  
A 

A variation of go is produced by replacing some specific p i ,  
where pi is a member of the set of occupied spin orbitals of $0, 
by pi 4- 6pi. The variation 6 q  must be of such a nature that it 
does not disrupt any of the existing spin orbital orthonormalities; 
thus, we require 

(6pil P/) = 0 (18)  

for all pI which are occupied. The consequent variation of total 
energy is given, following the Slater rules of Table 111, as 

6Ee1,i = ( 6pi ( l )  I sc(l)l pi (1) )  

+ C ( 6 ~ / ( 1 ) ( ~ / ( 2 ) 1 ( 1  - p 1 2 ) / r 1 2 1 ~ i ( l ) ~ / ( 2 ) )  (19)  
/ E  occ 

The restrictive conditions of eq 18 (which constrain the extrema1 
problem of eq 19)  lead, in Lagrangian undetermined multiplier 
form, to the conclusion that €el , i  is a minimum when 

iE occ 

Since the variations 6pi are arbitrary, by virtue of the implicit 
incorporation of the orthonormality restrictions of eq 18 into eq 
20, we conclude that we have reached a stationary point if 

/ E  occ 

where 3, which is known as the Fock operator, is defined as 

(23) 

The set of equations like eq 22, one for each pi in that set of spin 
orbitals which is occupied in $0, is known as the Hartree-Fock 
set of equations. 

c. The Self-Consistent Field 

We have reached a time for pause. The multidimensional 
problem of eq 1 and 4 has been reduced to the formal one- 
electron problem of eq 22. However, whereas the derivation of 
the Hartree-Fock equations has been straightforward, solving 
this set of coupled equations is a more formidable task. Although 
formally one-electron, eq 22 depends on all other electrons 
because of the integals which occur in the Fock operator of eq 
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23. The method for solving these equations is known as the 
self-consistent field (SCF) method. One starts by guessing a set 
of spin orbitals (pi(o)), inserts these into eq 23 to obtain the Fock 
operator 3 ( O ) ,  and solves eq 22 for a new set of spin orbitals 
{pi(’)}; this “first-improved’’ set of spin orbitals, (pit1)], is rein- 
serted into eq 23 to obtain a “first-improved’’ ?(‘)and, thence, 
a “second-improved’’ set etc. The cyclic iteration is re- 
peated until self-consistency is reached, that is, until the dif- 
ference (pi(”’+’)] - {pi(”’)] ,  or I fel(m+l) - Eel(”’)I, lies below 
some initially prescribed limit. 

d. Canonical Spin Orbitals 

Although the energy obtained by the Hartree-Fock SCF pro- 
cedure is unique, the spin orbitals cpi are not. This lack of uni- 
queness follows from the determinantal form of eq 11: the de- 
terminant of a matrix is invariant to a unitary tran~forrnation’~ 
of the matrix. 

Thus, we are free to choose a very special set of spin orbitals, 
namely, that which reduces eq 22 to the simple form 

3( l)cpi’( 1 )  = tiicpi’(1) = t icpi’(  1 )  (24) 

This set of spin orbitals, which diagonalizes the matrix E = (ti,), 
is known as the set of “canonical spin orbitals”. The are known 
as the “spin orbital energies”. The canonical set, as will be 
shown, acquires special significance with regard to electron 
excitation events. 

The physical interpretation of the Hartree-Fock equations, 
in the form of eq 24, is especially simple. Equation 24 is a 
Schrodinger equation for an electron moving simultaneously in 
the field of the nuclei and in the average field produced by all 
other electrons. This average arises because of the integration 
performed in eq 23. A “self-interaction” is excluded because 
of the 1 - P12 term, and the exchange term, -P12, takes care 
of antisymmetrization requirements. 

It is appropriate to belabor a few points. These are: 
The electronic Hamiltonian operator is not a sum of Fock 

operators. Thus, 

As a result, we find 

Eel # C t i  
i 

It must be emphasized that the Hartree-Fock equations are 
merely the result of a condition which we impose on the spin 
orbitals in order to obtain the best possible electronic ground- 
state wave function in a single Slater-determinant format. 

The use of orbital concepts such as “canonical orbital” or 
”orbital energy” does not imply the neglect of electron-electron 
interactions. These repulsions are explicitly introduced by the 
integrals which occur in the Fock operator of eq 23. 

The probability of finding the 1st electron in the vicinity of a 
given coordinate, xl, is not given by pl*(xl)pl(xl) dxl. The 
correct expression is 

dX1JJ.f.. . J # * ( X i J a . .  . ,XN) 
X $(xI,x~, . . . .XN) d ~ p d ~ 3  . . . , dXN 

which reduces to 

C c~ / ’ ( x i )~ / ( x i )  dxi (27) 
I €  occ 

Since the electrons are indistinguishable, this result should have 
been expected. 

e. LCAO Approximation 

Some comment concerning the manner of solving eq 24 is 

pertinent. Rather than solve the Hartree-Fock differential 
equations, these are first transformed to a matrix problem by 
introducing the linear combination of atomic orbitals (LCAO) 
approximation 

pi = C X a C a i  (28) 
a 

where xa is an atomic spin orbital. The task of finding the 
energies ti and the molecular spin orbitals pk is thereby reduced 
to the matrix problem 

Fc = Sce (29) 

where 

e = ( e i j )  = ( t is i j ) ;  c = (cai) (32) 

Solutions are obtained from the secular determinant 

I F -  = 0 (33) 

The t i  are obtained by diagonalization. The eigenvector ci, which 
is the adjoint of the row vector . . .), is obtained by 
inserting ti into eq 29 and solving for the cki. 

This LCAO approach has several advantages: it is convenient 
to program since it makes use of the powerful techniques of 
matrix algebra: the first set of orbitals (i.e., eigenvectors) can 
sometimes be guessed with some accuracy; since the molecular 
spin orbitals are expressed in terms of atomic spin orbitals, the 
concept of an “atom as part of molecule” becomes viable. As 
a result, all kinds of qualitative and semiquantitative notions 
which relate to our knowledge of atomic systems become fea- 
sible. 

f. Restricted and Unrestricted Hartree-Fock 

The final comment refers to the specific form employed for 
the one-electron eigenfunctions. So far, in fact, these have been 
spin orbitals. Since these spin orbitals are either singly occupied 
or not occupied at all, their use results in a very simple form for 
the various equations. However, we now wish to stress the im- 
plicit meaning of a restricted formalism. The restricted Har- 
tree-Fock formalism, in the context of interest to us, consists 
of two parts: 

(a) For each molecular spin orbital pk(xl;R) = &(rl;R)a(wl), 
where 6 is a molecular orbital and cy (or p) is the spin function 
for ms = 1/2 (or -1/2), there is another molecular spin orbital 
pk(Xi;R) for which pk4Xi;R) = dM1;R)P(w1) .  

(b) Since the number of electrons, N, is even and since we 
have constrained our interests to “closed shells”, it is well to 
be specific about what we mean by the term ”closed-shell 
ground state”. We assert that (ck and pk‘are either both occupied 
(i.e., contained in the determinant which is optimized) or both 
unoccupied. Alternatively, all space orbitals $ k  in the determi- 
nant which is optimized are assumed to be either doubly occu- 
pied or not occupied at all. States with either double or zero 
occupancy of all space orbitals are known as “closed-shell’’ 
systems; otherwise, they are known as “open-shell”. 

Open-shell Hartree-Fock theory15 is encumbered with several 
difficulties. We can attack the problem, or attempt to attack it, 
within the restricted Hartree-Fock formalism. Thus, we write 

pk(xi;R) = $k(ri ;R)40i) 

Pk’(X:R) = 6 k ( r l ; R ) P ( W l )  (34) 

and, in this manner, permit occupation numbers of one, two, or 
zero for the space orbitals. The advantage of the restricted 
formalism of eq 34 is that it ensures that certain states can be 
represented correctly by a single Slater determinant. These 
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I I A<- B />C 

-4- -7T* + 

tt -4-k “ 0  -5- 

Figure 1. A configurational diagram showing the n - T *  transition 
(which is denoted B - C) and the T -+ K’ transition (which is denoted 
B + A) of formaldehyde (H2CO). Except for the 2s0 and the T +  MO’s, 
the energies are obtained from experimental ionization energies [C. 
R. Brundle, M. B. Robin, and N. A. Kuebler, J. Am. Chem. Soc., 94, 1451 
(1972)]. A discussion of these transitions is available in ref 3d. The 
conventions employed in Figure 1 are standard. They are detailed in 
section I.C. 1. 

states are those for which the spin quantum numbers S and I Ms I 
are maximal. 

If we now drop the restriction of eq 34 and proceed to the 
unrestricted Hartree-Fock formalism, where Pk’ = f$k’P with 
f$k! # f$k, this last advantage is lost. Specifically, since the 
unrestricted version allows different space orbitals for different 
spins, single determinantal wave functions are no longer ei- 
genfunctions of the spin operator S2, when these represent 
nonclosed shell states. In the restricted version for S and I Ms I 
not maximal, and in the unrestricted version for a// S and I Ms I , 
a multideterminantal form must be used; otherwise, the wave 
function may not fulfill the basic permutation symmetry re- 
quirements. This leads immediately to noninteger occupation 
numbers for spin orbitals and, therefore, to a departure from the 
basic MO approximation. 

Whether or not the restricted Hartree-Fock formalism, with 
its retention of integer occupation numbers, is embraced by the 
term “MO approximation” becomes a question of taste. It is for 
these reasons that we have confined ourselves to closed-shell 
systems. 

g. Beyond the MO Approximation 

It is now clear how one proceeds beyond the MO approxi- 
mation. One merely includes more and more terms in the CI 
expansion of eq 14. The truncation of such an expansion, and 
the selection of the determinants which most efficiently truncate 
it, appears to be an art in itself. Finally, the actual computations 
are both expensive and labor-intensive, particularly when one 
seeks “really good” wave functions. 

We provide one example. For this purpose, we use the me- 
dium-sized molecule H&S. First, however, we recall that the 
better calculation is the one which yields the lower total energy. 
A recent computation16 for H2CS gave a total energy of 
-1 1 878.068 eV, which is very close to the Hartree-Fock limit. 
Improvement of the wave function17 by a very elaborate CI 
method decreased the total energy by 7.269 eV to yield 
- 11 885.337 eV. This improvement, which amounts to 0.06%, 
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could be considered to be minimal. However, in terms of 
chemical significance, 7.3 eV is indeed quite a large quantity 
of energy. In other words, while it is certainly comforting that the 
MO approximation accounts for 99.94% of the total energy, an 
error of 7.269 eV is not tolerable because chemistry deals with 
quantities of just this magnitude. Thus, whether one emphasizes 
the 0.06% or the 7.269 eV becomes a matter of taste. 

C. Configuration Description of Electronic 
Excitation Processes 

The approximations inherent in the MO concept, as detailed 
in section l.B, are straightforward. Before discussing their ap- 
propriateness, we will use the MO concept to describe different 
electronic states, and transitions among them. This description 
will reduce some of the more abstract concepts of section 1.B 
to a familiar form. 

As an example, consider the 3968-A transition of formalde- 
hyde, H2C1*0. This transition is usually denoted n - T * .  It is 
depicted in Figure 1 as B - C. It is clear that such diagrams can 
be drawn only when there is a very close resemblance between 
the orbitals which comprise the initial and final states. This singlet - triplet n - T* transition (and its singlet counterpart) is well 
known in a variety of carbonyl compounds where it can also be 
depicted as in Figure 1. 

The singlet - singlet T - T *  transition of HPCO is also 
shown in Figure 1. It is denoted B - A. In contrast to the use- 
fulness of the n - ir* classification, the T - T *  classification 
for carbonyls remains untested. Relevant data are scarce and 
secure assignments are ~navailable.‘~ It may well be that, in this 
instance, the single-configuration description for the ~ T T *  state 
is not very good. 

Electronic spectroscopy deals with transitions between two 
different electronic states. As the example of Figure 1 indicates, 
if the MO concept is useful, it should permit the classification 
of both states by one (and only one) set of orbitals and by the set 
of occupation numbers (0,1,2). Section I.C.l will be concerned 
with such a classification scheme. As will be evident, the major 
impact of the MO approximation is that it provides a simple and 
useful way of classifying spectroscopic data. Thus, the idea of 
an orbital (or orbital energy) as a numerical convenience or as 
a first approximation to the results of a more elaborate treatment 
is merely a minor aspect of its overall utility. 

1. Configuration Excitations 

We describe excited states using a set of fixed orbitals and 
the set of occupation numbers, (0,1,2/. Our description is pic- 
torial: The space orbital f$k is a line on an energy diagram; the 
spin function a is represented by an “up-arrow”, and (3 by a 
“down-arrow”. The MO set consists of one core MO, three va- 
lence MO’s which are fully occupied in the ground state, and two 
virtual MO’s (either valence or Rydberg) which are unoccupied 
in the ground state. A set of selected configurations for systems 
containing N, N + 1, N - 1, and N - 2 electrons is shown in 
Figures 2A, 28, 2C, and 2D, respectively. Some of the properties 
of these configurations are collected in Table IV. 

Transitions between these configurations may be supposed 
to correspond to the energy differences measured by various 
spectroscopic techniques. The correspondence between the 
different types of configurational excitation and the various 
spectroscopic processes is illustrated further in Table V and 
Figure 3. Indeed, it was the correspondences of Table V which 
dictated the selection of configurations made in Figure 2. The 
processes of Table V are restricted to techniques which use 
photons as primary excitation means; however, all of them could 
be excited by other means.5 

The terminology for the experimental processes (see Table 
V and Figure 3) is traditional and not necessarily logical. For 
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Figure 2. Electron configuration diagrams for a system containing one core MO, three valence MO's, and two virtual MO's: (A) N = 8 electrons, 
(13) N = 9 electrons, (C) N = 7 electrons, (D) N = 6 electrons. This figure suggests the possibility of a number of different sorts of experiment 
which have yet to be investigated. Furthermore, of the 18 X 17 = 306 possible transitions, only a very few will be discussed. The reader should 
consult Tables IV and V, Figure 3, and the text. 

TABLE IV. The Electronic Conflguratlons Depicted in Figure 2 

Ground state 
Lowest excited state; triplet 
Singly excited configurations; do not correspond to pure-spin states, but to mixtures of singlet and triplet 

states 

Doubly excited configuration; not a pure spin state 
Highly excited configuration; not a pure spin state 
Ground configuration of the N + 1 electron system 
Excited configuration of the N 4- 1 electron system 
Excited configuration of the N + 1 electron system; does not correspond to pure spin state; enters both 

Ground configuration of the N - 1 electron system; doublet state; Koopmans' configuration 
Excited configuration of the N - 1 electron system; doublet state; Koopmans' configuration 
"Shake up" configuration; contains quartet and doublet states 
"Shake up" configuration; pure quartet state 
"Core-ionized'' configuration; doublet state 
"Shake up" configuration connected with core ionization; enters both quartet and doublet states 
Valence "shake off" configuration; not a pure spin state 
Core "shake off" configuration; triplet state 

quartet and doublet states 

example, the acronym PES stands for photoelectron spectros- 
copy; UPS and XPS for UV and x-ray induced photoelectron 
spectroscopy, respectively; and ESCA for electron spectroscopy 
for chemical analysis. XPS and ESCA are the same techniques. 
The acronym ESCA is quite misleading in that the technique has 
a much wider range of applicability than this name implies. The 
acronyms PES and UPS are often used interchangeably, although 
PES is usually considered to embrace both UPS and XPS. The 
term "electron spectroscopy" describes a technique in which 
the kinetic energies and fluxes of electrons are measured; the 
word "photoelectron" relates to the creation of electrons by 

photons: and the letters, "U" and "X" refer to the energies (i.e., 
UV or x-ray) of the exciting photons. Although this terminology 
may be confusing, its use is quite precise. In the same, some- 
what-arbitrary fashion we reserve the term "excitation" for 
bound - bound transitions, the term "ionization" for bound + 

unbound transitions, and the term "transition" for both excitation 
and ionization. 

The terms "shake-up" and "shake-off'' originated in photo- 
electron spectroscopy and are quite graphic. Photon excitation 
of an atom or molecule may cause ionization of one electron and 
leave the system so disturbed (in the vernacular: so "shook up") 
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TABLE V. Photoinduced Electron Transltlons 

Pictorial 
Confign Name of exptl process 

excitation Name of transition process of Fig 3 

A - B, C, D, E, F 
A - + G  
B + A  
IC - A 
B - 3E 
H+A,B 
A+K,. . . , R  
A - M, N, P 
A+Q,R 
(A+) 0 + Q 
(A+) E - K 
(A-) 0 - K 

/ 

Electronic excitation VIS/UV absorption spectroscopy 
Core excitation X-ray absorption spectroscopy 
Phosphorescence 
Fluorescence 
Electronic excitation 
Ionization of the N + 1 electron system) 

Emission spectroscopy 

Triplet-triplet absorption 

1 
2 
7 

Ionization 
“Shake-up” 
“Shake off” 
Auger transition 
Autoionization 
X-ray emission 

I 
\ 

/ 
\ / ‘-, 

‘-1 \ \ / 

\ / 
. _ A  

/ 
- 1  

\ 

Figure 3. Pictorial representation of different transitions: (A) contains 
“simple” events; (B) contains simultaneous events; (C) and (D) contain 
consecutive events. 

that another electron may suffer excitation (i.e., “shake-up”) 
or even ionization (i.e., ”shake-off”). These “shake-up/shake- 
off” processes are concurrent, not consecutive. 

One limitation of Figure 2 is already evident: the configurations 
C, D, E, F, G, J, M, P, and Q do not represent pure spin states. 
All of these configurations participate in at least two state 
functions between which AS = 1. This difficulty characterizes 
open-shell systems. A correct spin permutation symmetry re- 
quires that more than one determinant be used to describe most 
open-shell electronic states. 

2. Transition Probabilities 
If the orbital set of Figure 2 is identical for all configurations, 

certain selection rules will govern transition probabilities. For 
example, if the transition $a - $b is electric dipole allowed, 
the transition moment ( I 2 r i I  $ b )  must differ from zero. 
Since r i  is a one-electron operator, nonzero values of ($,e 

I xiril $ b )  can arise only when the two determinants and qb 
differ by no more than one spin orbital (cf. Table Ill). Thus, the 
optical transitions A -+ “2, ’D, ’E, ’G, K, L, and 0 are allowed, 
in the absence of space-symmetry inhibitions, by the Slater rules. 
The optical transitions A - lF, *M, *N, and *P, on the other hand, 
are forbidden by the same rules. If these latter transitions occur 
at all, their intensity must be “stolen” by configuration interac- 
tion. For example, the transition A - lF could acquire intensity 
by a mixing of lF with any or all of ’C, ’D, ’E, or ’G. The transi- 
tions A -+ 4M, 4N, Q, and R are also forbidden; however, they 

Photoelectron spectroscopy 3, 4 
Photoionization 5 

6 
Auger spectroscopy 9 

8 
X-ray emission spectroscopy 10 

can obtain intensity by mixing with continuum orbitals or by 
spin-orbit coupling. The optical transitions A - B, 3C, 3D, 3E, 
and 3G are also electric-dipole forbidden but may acquire in- 
tensity by spin-orbit coupling. 

The experimental counterparts of the forbidden processes 
described above do occur. Therefore, in an experimental sense, 
they are “allowed”. This allowedness is a consequence of the 
fact that our description of all states, A to R, by configurations 
constructed from a single set of orbitals is inadequate. None- 
theless, the theoretical distinction between forbidden and allowed 
processes is one which holds up well in practice, in other words, 
even when observed, these “forbidden” events are weak. Thus, 
the theoretical distinctions are empirically useful. 

3. Less Familiar Processes 

Some comment on the less-familiar processes of Tables IV 
and V is in order. 

1. Distinctions between direct and consecufive processes 
are feasible. 

(a) The event (A +)D + L is an autoionization, and it consists 
of two consecutive processes. The event A + L is a simple di- 
rect ionization event. Although the energies of the emitted 
electrons, ionized and autoionized, are equal in both instances, 
the actual band shapes, flux vs. energy, may be very different. 
Direct ionization is characteristic of the geometry of A. Au- 
toionization, however, is characteristic of the geometry of D. In 
other words, the intermediate state D, having a lifetime of the 
order of a few vibrational periods, relaxes from a geometry 
characteristic of A to one more nearly characteristic of its own 
equilibrium requirements before it releases an electron into the 
continuum. 

(b) The event (A +)0 + Q is an Auger transition. It is a 
consecutive event, in contrast to the “shake-off” event A -, Q 
which is a direct event. Both processes, Auger and “shake-off”, 
involve the same two terminal and initial states, Q and A. The 
“shake-off’’ process (i.e., the direct ejection of two electrons) 
involves two initial particles, one being a photon, and three final 
particles. Given that the kinetic energy of the doubly ionized atom 
or molecule is small because of the large system inertia, it fol- 
lows that the sum of energies of the two ejected electrons is E( 1 
4- 2) = hu - (Ea - EA). Consequently, the energy of either one 
of these two electrons is continuously variable within the limits 
0 I E( 1 or 2) I hv - (Ea - EA). The energy of an Auger elec- 
tron, on the other hand, is quite precise, is given by €0 - EO, and 
is independent of the input photon energy. 

2. X-ray and Auger emission processes are competitive. The 
relative probability of the x-ray process increases with atomic 
number. 

3. Transitions which initiate in a state other than the ground 
state require a fairly high population of this initial state. Such 
experiments are difficult to perform. With the advent of laser 
technology, they will shortly become quite common. On the other 



Orbital Concept in Molecular Spectroscopy Chemical Reviews, 1977, Vol. 77,  No. 5 753 

hand, consecutive excitation/deexcitation events are easily 
observed. Most of the commonly observed processes (e.g., 
fluorescence, phosphorescence, autoionization, Auger events, 
X-ray emission, etc.) fall in this latter category. 

4. Limitations 

It is obvious that the classification schemes of Tables IV and 
V and Figures 1,  2 ,  and 3 do not arise from the MO approxima- 
tion. In fact, these classification schemes impose another, 
distinct approximation: they imply that one set of orbitals suffices 
for the various states. There are three different aspects to this 
approximation. 

The first is practical. It asks whether or not the classification 
schemes work. 

The second deals with numerical accuracy. It enquires into 
the correspondence between experiment and theory which can 
be achieved using a single determinantal wave function and only 
one set of orbitals. 

The third is purely theoretical. It is concerned with the con- 
ditions under which these approximations can be embedded in 
or justified by theory. 

The first question is easily answered; these classification 
schemes are exceedingly useful. In fact, in some form or other, 
they provide the basis for almost all spectroscopic discussions. 
The answer to the second question is equally clear; although the 
numerical agreement between quantities calculated on the MO 
level and their experimental counterparts may be imperfect, the 
MO description holds fairly well, especially for the ground state 
and for “normal” bond distances.20 The third question is the most 
difficult, and it is the one on which we will concentrate; section 
II will deal mainly, but not exclusively, with the interrelations of 
the different electronic states of one given molecule or atom, 
whereas the emphasis in section Ill will devolve on the rela- 
tionships of the electronic states of a composite molecule to the 
electronic states of its constituent parts. The central motif of 
section II is Koopmans’ theorem, which invests the canonical 
orbitals with a physical significance distinct from that of all other 
Hartree-Fock orbitals. The essence of section 111 is an effort to 
provide a unifying approach to the diverse types of “orbital in- 
teractions” which have been invoked, usually in ad hoc fashion, 
to “explain” this or that type of experimental result. 

II. Koopmans ’ Considerations 
A. Valence Orbitals 

The distinction between valence orbitals and core orbitals is 
valid in both experimental and theoretical senses. 

On the experimental side, the photon energies required to 
ionize a core electron are considerably larger than those required 
to ionize valence electrons (see Table I). The larger photon 
energies and the ancillary instrumental demands for better 
vacuum, better analysis, and better detection technologies have 
caused the apparatus for core studies to deviate markedly from 
that for valence studies. 

On the theoretical side, the removal of a core electron is a 
considerably larger and very different perturbation than that 
caused by removing a valence electron. For example, the re- 
moval of a C 1s electron of CH4, as is discussed in section 
ll.C.2.b, yields a CH: ion which is essentially identical with a 
ground state NH: ion; specifically, removal of a C 1s electron 
is equivalent to increasing the effective nuclear charge of carbon 
by one unit. It is difficult, on the other hand, to imagine any va- 
lence ionization process capable of generating a CH: entity 
which is remotely similar to any state of an ammonium ion. The 
point of relevance, of course, is that many of the concepts which 
are useful in UPS studies may well be useless in XPS studies, 
and vice versa. 

1. Valence Ionization 

The UPS study of valence ionizations has generated a wealth 
of evidence in favor of the MO approximation.21 Indeed, the 
evidential tilt is so overwhelming that one tends to forget that 
the MO approximation is, in fact, an approximation at all. For this 
reason, we intend to derive Koopmans’ theorem,22 outline its 
approximational content, and discuss it in relation to photo- 
electron spectroscopy. 

a. Koopmans’ Theorem: First Part 

MO approximation by 
We describe the ground state of an N-electron system in the 

(35)  

We also approximate the cationic state obtained in a particular 
ionization process, *!I1, by a single Slater determinant. Finally, 
we impose the restriction that QE and Q!,’ be fabricated from 
an identical set of spin orbitals. Consequently, we write 

(36) 

Under these conditions, the ionization energy equals the negative 
of the energy of the missing spin orbital 

*,N = $,” = I ~ a ( l ) ( ~ b ( 2 )  . . . pn(MI 

= $!;‘ = l p , ( l ) pb (2 ) .  . . pm(N - I ) [  

IE, = -tnn (37)  

This statement constitutes the first part of Koopmans’ theorem. 
Its proof follows directly from eq 15 and 22. 

Proof: The ionization energy is given by 

IE, = € ( $ N i l )  - E($$ (38)  

(39) 

where 

The terms contained in eq 42 but not contained in eq 40 are 
identical with those of eq 45 but of opposite sign. Hence, it fol- 
lows that 

IE, = - e n n  (46) 
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b. Koopmans’ Theorem: Second Part23 

Provided the set of spin orbitals (‘pk) is the canonical Har- 
tree-Fock set for the N-electron system, the negative of the 
orbital energy, - c n ,  is the best ionization energy. If the word 
“best” means “best in a variational sense”, this statement is 
the second part of Koopmans’ theorem. 

The N - 1 electron wave function of the cation can be ex- 
panded over a set of determinants (Le., a CI expansion for the 
cation states) 

K. Wittel and S. P. McGlynn 

WLB occ 

where, for example, $ E k ,  denotes a determinant from which the 
spin orbital pk has been deleted and in which p, has been re- 
placed by p@, and where we have dropped the N - 1 superscript 
on qN-l to avoid crowding. 

Simplification of qN-’ might consist of truncation to 

$-kck (48) qN-1 = 
kE occ 

However, what we really want is truncation to 

rF/- k (49) \kN-1 = 

This gross simplification of eq 47 to eq 49 is equivalent to the 
demand that we find an orthogonal transformation of the set of 
Hartree-Fock spin orbitals so that, simultaneously, the cationic 
state can be represented by one single determinant constituted 
from this set (i.e., eq 49) and the neutral molecule ground state 
can be represented by one single determinant constituted from 
the same set, namely by 

Koopmans’ theorem asserts this possibility and identifies the 
appropriate spin orbital set as the canonical Hartree-Fock set. 
The proof of these assertions follows: 

Proof: If we can show that 

($-/lHN-’1$-k) = 0, k # I (51) 

it follows that eq 49 represents the best variational approxi- 
mation to eq 48. The proof of eq 5 1 proceeds in straightforward 
fashion. The Lagrangian multipliers ckl for a canonical set are 
zero when k # I. Consequently 

2. Electron Affinities 

that the “best” electron affinity is also given by 
It may be shown, by a series of very similar approximations, 

EA, = - c p  (54) 

Since relatively little information is available for electron af- 
f i n i t i e~ , *~  we will concentrate here on ionization potentials. 

3. Photoelectron Spectroscopy 
The observables of photoelectron spectroscopy consist of 

the flux and energy of electrons emitted at a specific angle rel- 
ative to the ionizing photon beam. These observables, after 
conversion to ionization cross sections and energies, are the 
quantities which must be related to theory. 

The photoelectron spectrum of a typical molecule, ethylene, 

-1%. 

-12- 

- I ‘ , -  

-16- 

- ’ 8 -  

Flgure 4. Energy levels of ethylene, neutral and cationic; orbital energies 
of neutral ethylene [C. R. Brundle, M. B. Robin, N. A. Kuebler, and H. 
Basch, J. Am. Chem. Soc., 94, 1451 (1972)]; and the photoelectron 
spectrum of ethylene (ref 2a). 

is shown on the right of Figure 4. It consists of a plot of electron 
flux vs. ionization energy. Each band corresponds to one elec- 
tronic level of the ethylene cation. By Koopmans’ theorem, the 
ionization energies can be approximated by negative orbital 
energies. Consequently, we also show, in the middle part of 
Figure 4 the result of an actual MO calculation. Two points are 
obvious. Firstly, all intense structures can be related to the re- 
moval of an electron out of an occupied orbital (i.e., “shake-up” 
processes are not very likely) and, secondly, the numerical 
agreement is better than 10 % . 

Koopmans’ theorem provides a salient experiment/theory 
interface. Since we have gone to some trouble to “derive” it, 
and since its limits of validity are implicit in that derivation, we 
now outline these. 

a. Fixed-Nuclei Approximation 

It is the Born-Oppenheimer approximation which allows the 
notion of a “molecular geometry” (see section I.B.l). Thus, in 
addition to this approximation, it is also understood that the 
cationic N - 1 electron system which is the immediately terminal 
state of the process 

N-electron system + hv = (N - 1)-electron system + e- 

is identical in all geometric detail with the initial state of the 
N-electron system. This, of course, is the Franck-Condon ap- 
proximation. Consequently, Koopmans’ theorem is pertinent only 
to vertical ionization events. 

The vertical ionization energy,25 which we denote IEv, is 
usually taken to lie at the maximum of the cross section vs. IE 
plot (i.e , at the “top” of the photoelectron band). However, it 
is the 1st moment of this band, particularly i f  the band is either 
structured or skewed, which is the correct designation for IEv.*~ 
In any event, IEv must be distinguished from the adiabatic ion- 
ization energy, IEA. The adiabatic ionization energy is the dif- 
ference in energies of the vibrationally and rotationally unexcited 
states of the N- and ( N  - 1)-electron systems.85 Koopmans’ 
theorem is not valid for IEA, unless IEA = IEv. The distinction 
between IEA and IEv is shown in Figure 5.  

b. Correlation Energy 
The neglect of correlation energy is intrinsic to the Hartree- 

Fock approximation. The correlation energy is caused by the fact 
that electrons adjust their motions to the instantaneous charge 
distribution, and not to an average charge distribution (as is as- 
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sumed in the Hartree-Fock equations). In fact, the correlation 
energy is the difference between the correct energy and the 
Hartree-Fock energy associated with any given Hamiltonian 
operator. If relativistic effects are small, the latter is well known, 
and the “correct energy” is equivalent to the experimental en- 
ergy. 

Electrons of opposite spin will usually tend to stay consider- 
ably further apart (i.e., correlate their motions better) than a 
single determinantal wave function will allow. Thus, the corre- 
lation energy can be quite substantial. Nonetheless, while large 
for any one state, it is only the difference of that between two 
states, namely, that between the initial N- and terminal (N  - 
1)-electron states, which is of significance to photoelectron 
spectroscopy. This difference may well be small. Koopmans’ 
theorem implies that it is zero. 

c. Relaxation Energy 

The same set of spin orbitals is used to construct the Slater 
determinants for the N- and (N - 1)-electron systems. This 
supposition implies that the electrons of the cation do not adjust 
in any way to the reduction of interelectronic repulsions which 
must characterize the (N - l)-electron system. This supposition 
is known as the “frozen-core’’ or “frozen-orbital” approxima- 
tion. 

d. Nonrelativistic Approximation 

This approximation is not a consequence of the functional 
nature of the wave functions; it is, rather, a defect caused by the 
omission of relativistic terms from the Hamiltonian operator. We 
have omitted these terms solely for convenience. The various 
relativistic terms, for example, spin-orbit or spin-spin interac- 
tions, might have been included in the Fock operator in a way 
which would not have altered any of our prior conclusions. In fact, 
in his original paper,22 Koopmans included relativistic effects 
explicitly,26 and to no ill effects whatsoever in the form of eq 
37. 

e. Restriction to Closed-Shell Systems 

Koopmans’ theorem is restricted to closed-shell N-electron 
systems. Thus, at least in the form expressed here, it is specif- 
ically inapplicable to non-closed-shell systems (e.g., many 
transition metal complexes). 

Koopmans’ theorem is also restricted to certain N - 1 elec- 
tron cationic states. These are referred2’ to as “Koopmans’ 
configurations”. For example, the configurations K, L, and 0 of 
Figure 2 are Koopmans’ configurations, whereas the “shake-up” 
configurations M, N, and P are not. Ionizations of the ground state 
which terminate on a “shake-up” configuration are electric- 
dipole forbidden. Such “shake-up” transitions, if observed at 
all, usually have very low cross sections. 

4. Critique of Koopmans’ Theorem 
a. Energies 

Koopmans’ theorem, when applied to MO calculations, is a 
means of computing approximate IEv’s. The reasonableness 
of the approximations involved is a matter of taste. The errors 
in a MO calculation may amount to 1-3 eV. Such errors are large 
relative to the magnitudes of IEv’s as obtained by UPS. None- 
theless, relative to the total electronic energies of a moderately 
small molecule, which may amount to thousands of electron 
volts, such an error is quite small. 

However, a 1-3-eV error range is crucial to the assignment 
of UPS ionization energies. Thus, it is dangerous to attempt the 
assignment of cationic states which differ by less than 1 eV. As 
confirmation of this cautionary note, we emphasize three 
points. 

( N- I ) -e lectron 

N-e lec t ron  

system 

> a ‘  

_ _ _ _  
R 

Figure 5. The vertical and adiabatic processes for the ionization event 
Kelectron system + hu = ( N  - 1)-electron system + e-. 

(1) Several breakdowns of Koopmans’ theorem are known. 
That is, there exist systems where the sequence of cationic 
states differs from the sequence of canonical orbitals. 

(2) The known breakdowns are few. However, if one con- 
siders the information needed to verify such a breakdown, one 
rapidly concludes that such breakdowns might be more common 
than not. The information required28 involves good Hartree-Fock 
calculations as well as calculations which extend beyond the 
limitations of the Hartree-Fock approach and/or an experimental 
assignment of the cationic states. All of these are difficult to 
obtain. Hence, the widespread conclusion that the sequence of 
canonical orbitals matches that of the cationic states is more 
the result of a dearth of contradictory evidence than of any actual 
confirmatory data. Nonetheless, the existence of certain em- 
pirical relations, for example29 

IEk = -0.92~k (55) 
implies just such a matching of the two sequences. 

(3) The validity of Koopmans’ theorem does not hinge on the 
use of Hartree-Fock orbitals. However, it makes no sense to 
discuss the validity of the approximations inherent to Koopmans’ 
theorem within the context of computational schemes which are 
of lower quality than Hartree-Fock. Indeed, the much-parame- 
trized quantum chemical computational schemes (e.g., SPIN- 
DO3’) should be viewed as prescriptions for the calculation of 
IE’s, rather than as MO calculations. 

Molecular orbital energies, as obtained by the CNDO/2 al- 
gorithm, are plotted vs. experimental ionization energies in 
Figure 6. This particular plot, which is probably quite repre- 
sentative of the general quality of such correlations, is impres- 
sive. The least-squares fit is c = -1.331Ev + 1.53 and the 
standard deviation is u = 0.5 eV. 

b. Intensities 

Koopmans’ theorem is also an approximate selection rule for 
photoelectron spectroscopy. This facet of the theorem has been 
touched on previously, and it probably is its most important 
content. If Koopmans’ theorem were exact, only transitions 

*o - $-k 

would be allowed, whereas all “shake-up” (removal of one 
electron and excitation of another) and “shake-off’’ (double 
ionization) transitions would be forbidden. This is the aspect of 
Koopmans’ theorem which is best supported by experiment and 
computation and which, in turn, provides the best buttressing 
for the extensive use of poor-quality, semiempirical calcula- 
tions. 
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Flgure 6. A correlation of vertical ionization energies IEv and CNDO/P 
orbital energies for H2CS, F2CS, FCICS, and C12CS. The data used are 
taken from K. Wittel, Ph.D. Dissertation, Frankfurt (W. Germany), 1974; 
K. Wittel, A. Haas, and H. Bock, Chem. Ber., 105,3865 (1972); H. W. 
Kroto and R. J. Suffolk, Chem. fhys. Lett., 15,545 (1972); and B. Sol- 
ouki, P. Rosmus, and H. Bock, J. Am. Chem. Soc., 98,6054 (1976). The 
standard deviation is comparable to certain differences of ionization 
energy which occur in the PES of CI2CS (i.e., the chlorine lone-pair 
ionization events) and, as a result, these assignments are doubtful. 

CP, c s  

-20 1 
A B C D 

Figure 7. Electronic configurations of thiophosgene, C12CS: (A) the 
ground state, (B) a Koopmans’ configuration, (C) a shake-up, and (D) 
a shake-off configuration. Note that (A) refers to N-, (B) and (C) to (N  - 1)-, and (D) to ( N  - 2)-electron systems. (A) is drawn using the ex- 
perimental ionization energies and Koopmans’ theorem; hence, the 
energies are MO energies. 

“Shake-up” transitions, which have zero probability within 
the Koopmans’ context, are often observed, particularly in 
conjunction with core ionizations. Usually, they are of low cross 
section. If they are of high intensity, it is probable that, in this 
instance, the equality IEk = - 6 k  is invalid. Conversely, when 
it is known that IEk = -Ek is a poor equality, it might be expected 
that “shake-up” transitions $o + $!!k, should also be relatively 
intense. 

Different configurations of thiophosgene, C12CS, are shown 
in Figure 7. Transitions from the ground configuration (A) to 
Koopmans’ configurations (B) are allowed and account for all 
the major structures in the photoelectron spectrum of Figure 8. 
Transitions to the “shake-up” (C) and “shake-off’’ (D) configu- 
rations, if they occur at all, contribute only to the weak back- 
ground beyond 15 eV. A rough estimate of “shake-up” transition 
energies is obtained by adding ionization energies to ultraviolet 
excitation energies, yielding a lower limit of -14 eV. By a similar 
argument, “shake-off’’ energies should exhibit a lower limit of 
-21 eV. The one-to-one correspondence between the number 
of photoelectron bands and the number of orbitals (in other 
words, the validity of the selection rule aspects of Koopmans’ 

70 72 74 76 7 0  

- 1 E  i e V )  - 
Flgure 8. The photoelectron spectrum of C12CS. The intensity scale is 
linear. 

theorem) is not founded on theory, but on the experience gleaned 
from a great deal of experimental work. 

c. Uniqueness of the Canonical Set 

Photoelectron spectroscopy, by virtue of its constant referral 
to Koopmans’ theorem, has enhanced the credibility of the MO 
concept. It has attached a quality of an “observable” to the 
canonical MO energy and, thereby, has intensified the use of MO 
concepts in all of chemistry. Unfortunately, it is often forgotten 
that $ k  and ek have direct experimental significances only for 
ionization events. In fact, the set of canonical MO’s, although 
uniquely defined in a mathematical sense, is totally arbitrary. 
Localized MO’s, for example, are heavily exploited in chemistry 
because of their transferability from molecule to molecule and 
because they are more closely connected with traditional 
chemical ideas concerning homology and reactive groupings. 
Indeed, any set of MO’s which is obtained from the canonical set 
by a linear transformation of this set is equally as good as the 
canonical set itself. Thus, the pertinent set of orbitals depends 
on taste and may be canonical (usually delocalized), localized, 
or otherwise; the only requirement is that the total electron 
distribution remain unaltered. Koopmans’ theorem, however, 
invests the canonical set with a certain uniqueness for ionization 
events. And it is this investiture, coupled with the accessibility 
of PES data, which makes Koopmans’ theorem so important. 

5. Valence Excitation 

Having established a description of ionization events as a 
removal of electrons from specific orbitals, we now wish to in- 
vestigate whether valence excitations can be described as 

(ok -P (op (57) 
It turns out that they cannot; permutational and space symmetry 
requirements force a departure from the single-determinant 
description of electronic states (i.e., from the MO approxima- 
tion). 

a. Nonexistence of a “Koopmans’ Theorem” for 
Electronic Excitations 

We use the same approximations as previously. These are 

*O = Ipa(l)(ob(2) . . . (ok . . - (on(wI = $0 (58) 

The excitation energy A€; is given by 

AE; = E p  - Ek - Jkp  -k K k p  (60) 
where Jkp and Kkp are coulomb and exchange integrals, re- 
spectively, and are given by 
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TABLE VI 

A. Configuration Wave Functions (One-Electron Excitations Only) 
Configuration Wave function 

$0 
IC 
IC :,B 

B. State Energies and Wave Functions (No Configuration Interaction)a 

EW) - 
State Wave function MC S €('\E") 

The derivation of eq 60 is straightforward and is not given here. 
Instead, we merely ask if eq 60 is the "best" approximation to 
the excitation energy, and we enquire whether or not the use of 
the canonical set is better in any way than any other set. If a€; 
of eq 60 were "best", then it follows that no two excited con- 
figurations, $: and $7, could interact, that is, that ($$ \ SN\ $;) 
= 0. This, of course, is not the case. The use of the Slater rules 
of Table 1 1 1  leads to 

Two points emerge from all of this. Firstly, although eq 60 does 
contain orbital energies, the excitation energy is not simply equal 
to their d i f feren~e.~'  And secondly, in contrast to the minimum 
property of Koopmans' configurations, the expression of eq 60 
is inadequate. 

The above inadequacies are intrinsic to the definition of the 
Fock operator 

3 V )  = %V) + c J- dX2.P/"(2)[(1 - 2312)/r121P/(a 
/ E  occ 

(23') 

were the summation runs over all orbitals which are occupied 
in the ground configuration. When yN(1) acts on an orbital I' 
which is occupied in $o, the electron interaction for one of the 
terms of eq 23' is zero in the sense that 

As a result, we say that the Fock operator excludes electron 
self-interactions and allows the electron under study, if it be in 
one of the spin orbitals of $0, to interact only with the other (N 
- 1) electrons in q0. However, when 3 N( 1) acts on an orbital 
which is not contained in Go, say pP where p @ occ, all terms 
of the summation of eq 23' are nonzero. Thus, the energy of the 
virtual (unoccupied) spin orbital refers to an (N + 1)-electron 
system. Or, somewhat equivalently, the spin orbital p,, describes 
the motion of an electron in the field produced by the nuclei and 
by N other electrons. The integrals Jk, and Kk, of eq 60 remedy 
this very artificial situation by deleting the unnecessary terms 
of e,, from A€:. It is for this same reason that the virtual ca- 

TABLE vil. Singlet-Triplet Splitting in Representative Moleculesa 

Excitation 4s) - U T )  
Molecule tvDe (cm-') 

H2CO n - a '  2 996 
c12cs n - K* 2 500 
Pyrazine n - K *  4 050 
Pyrimidine n - K' 2 630 

Naphthalene a - a*(La) 13 354 
Benzene T-" i a  580 

Hexahelicene a - a'(La) a i o 0  
a These data are taken from S. P. McGlynn, T. Azumi. and M. Kinoshita, 

"Molecular Spectroscopy of the Triplet State", Prentice-Hall. Englewood 
Cliffs, N.J., 1969. 

nonical orbitals are not optimal for excited states (i.e., are re- 
sponsible for the CI property demanded by eq 63). 

b. Spin Multiplicity 

orbitals as 
When relativistic effects are small, we may write the spin 

(65) 
(Pk(X1) = pk(rlgW1) = d)k(rl)a(Wl) 

(Pk'(x1) = pk'(rlvul) = $k(rl)P(@l) 
As a result, any configuration & is fourfold degenerate in the 
sense that the q0 - $: excitation can be written in four 
ways 

all of which contain the same space orbital promotion. As indi- 
cated, the excited configurations differ in their spin quantum 
number MS. The Ms = f l  configurations are two components 
of a triplet state (i.e., a state for which S = 1). The f l  compo- 
nents are pure spin states (Le., the single determinants $!! and 
$!$ are simultaneous eigenfunctions of S2 and Sz). The single 
Slater determinants $;: and $$, on the other hand, are not pure 
spin states. In order to obtain simultaneous eigenfunctions of 
S2 and S,, we are forced to write 

where the upper is the singlet state and the lower is the Ms = 
0 component of the triplet state. The energies of the singlet and 
triplet states are given in Table VI. The three triplet components 
remain degenerate in the absence of spin-orbit or spin-spin 
coupling. 

The energy differences between singlet and corresponding 
triplet states may be quite large, as is demonstrated in Table VII. 
In a simplistic approach, this singlet/triplet splitting equals twice 
the exchange integral Kk,,, showing that this integral is far from 
negligible. 

Equations 67 demonstrate that spin orbital identities, in the 
sense of integral electron occupancy numbers, are irredeemably 
lost in certain excited states because of the spin-quantization 
demands. One could attempt to retain the concept of an average 
excitation energy for a 4k - q5p excitation by writing 

The benefits of doing so are dubious: Once Jip and KLw are 
known, the energies of the component states are just as easily 
evaluated as is the average configurational energy defined by 
eq 68. 

Singlet, triplet, etc., wave functions can be formulated without 
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using the notion of electron spin at all. This circumstance does 
not change any prior conclusions. The multiplicity now refers 
to certain irreducible representations of the permutation group 
of all electrons. This topic has been discussed in detail by Matsen 
in an admirable series of papers on “spin-free” quantum 
chemistry.32 

c. Degenerate Space Orbitals 

When there is spatial degeneracy (e.g., ir - ir* excitations 
in a linear molecule), the situation gets worse. The set of con- 
figurations ($$, $+, $[, $$], where (k,kq and { h , ~ ’ }  indicate the 
degenerate components of ir and ir*, respectively, spans a re- 
ducible representation of the molecular point group. In the 
general case, it is found that only certain linear combinations 
of the $!Is span irreducible representation spaces. Thus, a given 
electronic state must be described as a linear combination of 
two or more configurations. The net result is that the space or- 
bital correspondence *$ - k - F is completely lost and that 
the energy expressions involve a variety of “exchange” inte- 
grals. In short, the MO description breaks down. The best known 
example for such a degeneracy is furnished by benzene, C6Hs. 
The lowest r-orbital excitation (el, - eZu) yields three differents 
states of widely differing energies. These are: lB2,, (3.846 Wm-l), 
lBlu (5.000 pm-l) and lE1, (5.405 Fm-l). This situation requires, 
at least, a superposition of configurations of the ir -+ ir* (e,, 
3 e2J type, as is provided within the Pariser-Parr-Pople 
framework.3a 

Even in the case of near degeneracy, the interaction matrix 
elements of eq 63 can provide a very large mixing of different 
configurations. This fact is reflected in the failure of MO calcu- 
lations to provide good estimates of excitation energies. Indeed, 
the inclusion of configuration interaction is a mandated re- 
quirement even when there is no obvious MO degeneracy or 
near-degeneracy . 

d. A Consensus 

The unpleasantness of the situation concerning excited 
electronic states, as delineated in sections II.A.5.a-c contrasts 
with the ease with which ionization events were handled in 
sections ll.A.2-4. It is this disparity which accounts for the rel- 
atively simple manner in which photoelectron spectra may be 
interpreted-and, hence, the popularity of XPS and UPS-and 
the great difficulty attendant to any discussion of electronic 
absorption spectroscopy (Le., VIS, UV, and VUV). We now en- 
quire into ways in which these difficulties might be resolved. 

1. One can perform HF-SCF calculations for certain excited 
states. However, this is a very difficult, very lengthy, and very 
expensive affair. 

2. One might perform configuration interaction calculations 
using the ground-state orbital set. This is a routine procedure. 
However, for n occupied and m unoccupied orbitals there are 
nm singly excited configurations. Consequently, the task of 
truncating the very long CI expansion 

* = $o + $+a! + $;;a$; + . . . (69) 

is troublesome, and this, coupled with the need for a proper 
choice of orbitals, requires a great deal of art and computer time. 
And, finally, the MO idea is totally lost in a long list of CI expan- 
sion coefficients.33 

3. For a limited class of excitations, there exists an attractive 
alternative. If we confine attention to all the possible excitations 
of one spin orbital, say pm, we can construct a simple, modified 
orbital picture. We think that this modified approach is very 
powerful. As a result, we refer to these modified orbitals as 
”Optimum Excited State Orbitals”, and we devote the next 
section to them. 

k, P k, I u. Y 

6. Optimum Orbitals for Excited Electronic States 
We will confine our interest to all excitations (om - qp where 

prn is some specific one of the orbitals contained in q0, and pp 
is any of the virtual set of eigenfunctions of 3. We now define 
the optimum excited orbitals34 +p by 

3rn(l)+p(l) = zp+p,(l) (70) 

where 9, is the one-electron operator 

3m(1) = dx2*&(2)[(1 - ~12)/r121(ok(2) 
kE occ 
k # m  

(71) 

= - S dx2*~22) [ (1  - P12)/r12I~rn(2) (72) 

We also require that the virtual optimum orbital +p be orthogonal 
to all those contained in go, namely that 

(+plpk) = 0 k g  occ (73) 

This condition is readily satisfied by expanding +M in terms of the 
set of virtual Hartree-Fock orbitals of 3 

+p = c PUG@ 
Y e  occ 

(74) 

Given the expansion of eq 74, we can now write 

+Y-,f$i= c $LC”W (75) 
UB occ 

and we can show that is optimum with respect to the N- 
electron Hamilton operator B N. Th-e proof of this last statement 
requires that we show ($$,I SNl $fn) = 0 for p # A. This re- 
quirement is demonstrated in eq 76-78. 

(ik I S N J  4 fn) = ( +p( 1) I BY 1) I +A( 1 ))  

+ (+p(l)pk(2)[(1 - ~12)/r121~X(1)‘Fk(2)) (76) 
kE occ 
k#m 

= (+J1 ) \3m(1 ) \+X(1 ) )  (77) 

= O  (78) 

Equation 78 follows from the fact that +p and +A are eigen- 
functions of the same Hermitian operator, 9,. 

Excitation energies now consist of a difference of orbital 
energies 

AEF = (k$SN1$k) - ( $ o l s N l $ o )  (79) 

= (+p(1)1 

+ (pk(l)+p(2)[(1 - P12)/r121(ok(1)+p(2)) 

) )  +p( 1)) - ( p m ( l ) l  B c ( l ) l  pm(1)) 

k E  occ 
k f m  

kE occ 
k #  rn 

- ((Ok(l)(Pm(2)[(1 - ~12)/r121pk(l)(Prn(2)) (80) 

(81) - - zp - tm 

Thus, for each possible excitation of any one of the orbitals 
contained in go (i.e., pm - any +J, we have constructed a set 

which has all the nice properties of eq 78 and 81. Unfortu- 
nately, the set {&} is different for different choices of rn and 
should be labeled accordingly, say as {i&,,,,,,,). Furthermore, the 
orbitals from different sets need not be orthogonal (Le., 

For any one starting orbital, pm, the final orbitals gp have 
several convenient properties: they are, by construction, or- 
thogonal to all the occupied orbitals; they are eigenfunctions of 
a one-electron, effective Hamiltonian, ym, which corresponds 
to the (N - 1)- and not to the N-election system; configurations 
constructed from the set (+p7m)}, say vm, are noninteracting (Le., 
the +p(m) are optimal for the description of excited states which 
are generated by excitation of the spin orbital pm, rn E occ); the 

(+pOrn)l +u(n,) z apu).  
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Figure 9. An example of a Rydberg series (schematic): The 4p - ns 
transitions of CH3Br. 

energy of -+ $k is given by orbital energy differences in eq 
81. 

This approach should be especially appropriate for molecules 
for which the first two ionization energies are widely separated. 
Under these coQditions, one might expect that the excitation 
energies $o - $k and $,, -+ $$ should be quite different a_nd, 
hence, that configuration interactions, sych as ($%I SNl $:) 
might also be quite small. Thus, when ($$,lSNl$!) N 0, an 
orbital description will be appropriate for all excitations q,, - 
+@, where m ( E  occ) is fixed and y (& occ) is variable. We 
suspect that these conditions are fulfilled for Rydberg states and 
we will discuss these in the next section. 

B. Rydberg Orbitals35 

obey the Rydberg formula 
Certain series of atomic and molecular electronic excitations 

(82) 

where AE is the transition energy; IE is the ionization energy; 
R is the Rydberg constant; n is the principal quantum number 
of the terminating orbital; and 6 = 6(0, the quantum defect, is a 
measure of the departure from simple hydrogen-like behavior. 
Such excitations are known as “Rydberg transitions”. 

The methyl bromide molecule, for example, exhibits a number 
of Rydberg series. The lowest ionization potential of CH3Br is 
attributable to removal of an electron from an MO which is lo- 
calized on the bromine center and of approximate 4p nature. In 
the progression toward the ionization limit, the 4p electron, as 
shown in Figure 9, may well be excited to any one of the 5s, 6s, 
7% . . . , m s  orbitals of the bromine center. The excitations 4p 
-+ 5% 4p - 6s, 4p - 7s, . . . 4p -+ a s  (or IE4p), which con- 
verge on the 4p ionization limit, constitute a Rydberg series. The 
actual situation may be a good deal more complicated than our 
simple example indicates: The VUV spectrum of CH3Br, as 
shown in Figure IO, amply demonstrates this complexity. 

A€ = IE - R/ (n  - 6)2 

The term value of an excited Rydberg level is 

r, = R / ( n  - 6)’ (83) 
where n, in the specific case of CH3Br, equals 5 ,  6, 7, . . . , 03. 

This sort of behavior is reminiscent of an atom. In addition, one 
finds 6 = 6(0. For molecules in which the Rydberg chromophore 
is a 2nd row atom, it is found that36 

6(s) 1; a(p) N 0.6; 6(d) N 0.1 (84) 

Figure 10. The VUV absorption spectrum of gaseous CH3Br. The ab- 
sorptive transitions 4p -, 5s, 4p -, 6s, etc., are indicated below the 
spectrum. The 4p -, ms transition is an ionization event. The doubled 
nature of the Rydberg transitions is caused by spin-orbit coupling. 

Thus, even in molecules, the value of 6 is used to determine an 
“/-quantum number” for the Rydberg level. In other words, the 
empirical description of molecular Rydberg levels is, in essence, 
an atomic description. 

This description agrees with our supposition that a Rydberg 
orbital is so large and so loosely bound as to be unaffected by 
the details of molecule architecture. In fact, one may suppose 
that the Rydberg electron of a neutral molecule “sees” a singly 
charged core which is almost spherically symmetrical and which 
it interpenetrates only very slightly. Indeed, one may guess the 
degree of penetration. Since, for given n, an s-type orbital is 
more penetrating than p which, in turn, is more penetrating than 
d, we might expect that deviation from hydrogen-like behavior 
would vary as s > p > d. This, as witness the values of 6(0,  is 
precisely that which is observed. 

The concept of “penetration” can be expressed differently. 
Any Rydberg orbital must be orthogonal to all core orbitals.37 
Thus, the Rydberg orbital with the largest core part is also the 
one with the greatest core-orthogonality requirements. Since 
the number of subshells of any readily conceivable core is s > 
p > d, orthogonality requires that the core parts of Rydberg vary 
as s > p > d. Thus, the core orthogonality requirement, which 
in turn devolves on the enumeration of core precursors, is merely 
another way of describing p e n e t r a t i ~ n . ~ ~  

In any event, we arrive at the empirical conclusion that a 
Rydberg electron moves in a very large orbital, that it sees a 
more or less spherical core of unit charge which it deforms 
and/or penetrates slightly, and that the degree of deformation 
and/or penetration is larger for small n, and small 1. Thus, we 
conclude that a Rydberg orbital is of the form 

All Rn/(f-) Y/rT7(694) (85) 

In accord with this, it is found that core/Rydberg exchange 
energies are small and that they decrease with increasing nand 
1. 

We now propose, on the basis of the above suppositions, to 
“derive” the Rydberg equation. 

1. Rydberg Equation 
Inspection of Figure 9 indicates that the optimum virtual orbital 

approach of section ll.A.6 should be particularly suited to a de- 
scription of Rydberg series. Thus, for a Rydberg transition, we 
write 

A€$,= F p  - E ,  (86) 

A€k = IE, 4- Zp (87) 

Introducing Koopmans’ theorem, this becomes 

Now according to eq 81, we have 

7 p  = (+p(1)lym(1)l+p) (88) 

where the Fock operator 3’,(1) is a one-electron effective 
Hamiltonian for an electron moving in the potential field of the 
nuclei and N - 1 other electrons. If the electron is far removed 
from this core, we may conclude that its primary effect on the 
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Figure 11. The potential V ( r l )  = -l/r + 1IP. 
core is to polarize it. Consequently, we suppose the Rydberg 
electron to move in the field of a polarizable core of unit 
charge. 

For such a system, we write the potential part of 3,( 1) as 

V(1) = --I/rl + M/r12 (89) 

where M is a constant. With this potential, the solutions to eq 70 
are39 

ZM = -R/[n,  + 1 + / + 6 / 1 2  (90) 

where n, = 0, 1, 2, . . . is the radial quantum number, and 61 is 
given by 

6\ = [ ( I  + 1/2)2 + M] 1‘2 - - ’/2 
FS -M/(2/ 4- 1) (92) 

Equation 90 for Z p  is of similar form to eq 83. The two forms can 
be made identical, in which case the relationship between of 
eq 91 or 92 and 6 of eq 83 is readily obtained. 

We now wish to make a comparison of theory and experiment. 
For this purpose, we choose the empirical synopsis of eq 84 for 
second-row atoms. We also choose the lowest energy s-Rydberg 
orbital in order to determine the value of M. Thus, with n = 3, 
we find the effective quantum number 

n; = n - 6(1) 

n; = n,+ 1 + / +  6, 

(93a) 

to be 2 for the 3s Rydberg state. Since n; is also given by 

(93W 

we find, after insertion of n, = 0, / = 0, and n; = 2, that 61 = 1. 
From eq 91, it then follows that M = 2. Knowing M, we may 
calculate n; for different I .  These values of n; are compared with 
the empirical values in Table VIII. The agreement is quite sat- 
isfactory. We conclude that eq 89 provides a fair description of 
the potential in which a Rydberg electron moves. This potential 
is sketched in Figure 11. 

The solutions to eq 70, using the potential of eq 89 are given 
by the confluent hypergeometric functions 

++ = p’’ee-p/2F(n - 1 ’ -  I ,  21’ + 2, p)Y\/m(O,b) (94) 

These reduce to the hydrogenic functions for M = 0. Not sur- 
prisingly, we find the Rydberg orbitals to be of the form 

Two final comments are required. 
1. The approximation of eq 89 involves the replacement of 

the exchange term of 3, by an average local potential.40 This 
approximation works only because core/Rydberg exchange 
energies are small. In fact, one could define a Rydberg orbital 

TABLE VIII. Effective Quantum Numbers Obtalned from a Polarlzable 
Core Model (Eq 89 with M = 2) 

“ I  

Expt Theory 
I (en 841 lea 911 

0 2 
1 2.4 
2 2.9 

n 2  
2.56 
3.37 

as one for which the exchange interactions with the core are 
negligible. 

2. Since the Rydberg equation provides a good description 
of a great number of electronic transitions in atoms and in 
molecules, the approximation of eq 86 and 89 attain some 
measure of justification. Hence, we conclude that there is at least 
one class of electronically excited states which is amenable to 
a simple orbital treatment. 

C. Core Orbitals 
The core orbitals are discussed separately because the 

phenomena associated with them and the technology required 
for studying them are so different from those associated with 
valence electrons. Some of these differences are: 

Core ionization and excitation require x-ray technology 
whereas valence ionization and excitation can usually be done 
with UV radiation. 

Core ionization energies are characteristic of the atomic 
center from which ionization occurs. The effects of the other 
atomic centers in the molecule are normally so small, in a rel- 
ative sense, that they can be discussed using perturbation theory. 
In fact, the effects of the neighboring atoms are supposedly di- 
agnostic of the atomic environment and, as a result, the shifts 
of the core ionization energies from the free atom positions are 
known as “chemical shifts”. These shifts are usually discussed 
using a point-charge potential model4’ (see section 1I.C. 1 .a). 

Since the core orbital is localized on a specific atomic center, 
it follows, on the basis of an LCAO description of the valence 
orbitals, that intensities of core - valence excitations (Le., x-ray 
absorption) in molecules can be discussed using atomic se- 
lection rules. This topic will be discussed in section ll.C.2.a. 

Koopmans’ theorem does not hold nearly as well for core 
ionization events as for valence ionizations. For example, 
“shake-up” and “shake-off” events are more common for core 
ionization. This topic will be discussed in sections II.C.l .c, 2.b, 
and 3. 

Core-ionized systems decay by emitting x-rays and/or Auger 
electrons. Valence-ionized systems exhibit a preference for a 
photochemical relaxation route. And, curiously enough, the x-ray 
and Auger relaxation channels appear to be the more heavily 
studied. 

XPS has been extensively used for the study of solid materi- 
a l ~ . ~ *  The solid state contains many open-shell molecular sys- 
tems, dominant among them being the transition metal com- 
p o u n d ~ . ~ ~  An open-shell N-electron system implies the possi- 
bility of a doubly open-shell ( N  - 1)-electron system. Such a 
situation can give rise to new phenomena. For example, ex- 
change splittings of the cationic levels can be observed, and 
extensive “shake-up” associable with transitions of the types 
metal - metal, metal - ligand, ligand - metal, or ligand -+ 

ligand does occur. These phenomena cannot be described within 
the context of a simple orbital picture. 

1. Core Ionizations 
Core ionization energies are characteristic of the atom but 

do exhibit chemical shifts. These shifts reflect the influence of 
the neighboring atomic centers on the core orbital in question. 
For example, the four different carbon centers of F3CC(0)OC2H5 
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exhibit a total spread of A(lEc = 8 eV. This is quite large. 
However, relative to IEc = 290 eV, it amounts to only 3%. 
Thus, a perturbation theory approach seems appropriate. 

Core orbitals can be supposed to be highly localized on their 
respective centers (Le., to be highly contracted atomic orbitals). 
As a result of this strong nuclear coupling, all the other atomic 
centers and valence electrons can be thought of as being rela- 
tively “far away”. These suppositions suggest that electron- 
electron interactions can be treated in a simple Coulombic 
fashion. 

a. Point-Charge Potential Model 

of atom A 
We start by applying Koopmans’ theorem to a core orbital pi 

IE: = -e ;  
= - (pi( 1) I T(1) 1 ‘&( 1)) - (pi( 1) I ZA/rA1 I (Pi( 1)) 

- c (CpW)Pi(2)1 [ ( I  - ~12)/r1211(Pi(1)(0i(2)) 

+ C I ( ~ i ( l ) l z B / r B i I ~ i ( 1 ) )  

- c (cpi(l)&,k(2)1 [ ( I  - P12)/r121 Ico“n(l)&.k(2))l 

c‘ on A 

B Z A  

k o n  B 

- c (Pi(l)CpV(2)l [(I  - P12)/r121 IPi(l)CpV(2)) (96) 
V 

The various terms of eq 96, in succession, represent kinetic 
energy; attraction by the nucleus A; interaction with core elec- 
trons on A; interaction with nuclei and core electrons of atoms 
B # A; and, finally, interaction with the valence electron system. 
Since the last three terms are the only ones which involve atomic 
centers B # A and the valence electron system, only these will 
change upon going from one molecule to another. 

We now introduce the following  approximation^.^^ 
In line with standard practice in perturbation theory, we will 

use pi, unchanged, for the core orbital of atom A, regardless 
of the molecule of which atom A is a constituent. 

The valence orbitals are given by the LCAO expression 

(97) 

9x = zx - Nx - c c c:, 
V E  occ I on X 

If the change in the valence charge caused by placing atom 

(104) 

X into a molecule is represented by 

A9x = 9x - 9; 

where 9; refers to a free atom X, it follows from eq 97-104 that 
the change in core-ionization energy is given by 

= -A9AY$c - A9X/RAX (105) 
X Z A  

The physical interpretation of eq 105 is simple. It takes more 
energy to remove an electron from a core orbital of A when A 
is positively charged, and less energy when all atoms X # A are 
negatively charged. Several equations similar to eq 105 have 
been used successfully to correlate chemical shift data. Of these, 
we list only 

(1 06) A(iE:) = a9A + b 

and 

&E:) = c9,4 + 9x /R~x  + d (107) 
X Z A  

Both of these equations exhibit considerable similarities to eq 
105. 

b. Critique of the Point Charge Potential Model 

The point charge model has been exceedingly successful. 
Despite this, it suffers some drawbacks: 

Equation 105 may be used in conjunction with quantum 
chemistry to calculate values of A(lE2). The quantity to be cal- 
culated is the atomic valence charge 9x of every atomic center 
in the molecule. The calculation of 9x for center X devolves on 
the calculation of the valence electron population, Px, on center 
X, and it is at this point that ambiguity enters.45 The electron 
population of an atom in a molecule is not a precisely defined 
quantity. A precise definition would require a partitioning of the 
whole molecular space into atomic subspaces, and a means of 
allocating the electronic charge which is located at the 
boundaries between these subspaces to the contiguous sub- 
spaces. Unfortunately, there is no “correct” way of doing this. 
Hence, the relation of eq 105 to quantum chemistry is opera- 
tionally illdefined. 

The second term of eq 105 is not small relative to the mag- 
nitudes of chemical shifts. Hence, it cannot be neglected. 

The removal of a core electron is equivalent to replacing the 
original nucleus of atomic number ZA by one of atomic number 
ZA + 1. This viewpoint constitutes the basic idea of the 
“Equivalent Core” approach.46 To the extent that this view be 
correct, it follows that some degree of orbital contraction must 
occur during or after the core ionization event. If the orbital re- 
laxation is a fast process and if it can proceed to any significant 
degree during the time required for ionization, it can and will 
introduce changes in A(lE:). These, of course, will affect eq 
105. 

c. Modification of Koopmans’ Theorem for Inner Shells 
The orbital picture is well suited to a discussion of valence 

ionizations and is moderately good for valence - Rydberg ex- 
citations. With some reservations, it is also useful for core ion- 
izations and even intravalence excitations. However, the orbital 
description can be carried one step further; in fact, it can be 
modified to take account of all “shake-up” and “shake-off’’ 
satellite events. We will now investigate this modification. We 
will enquire into the nature of the experimental quantity to which 
an orbital energy can be related when some of the approxima- 
tions inherent in Koopmans’ theorem are physically unrealis- 
tic. 

We start with an eigenfunction \k of the N-electron sys- 
tern4’ 

3f;q = Ez\k (108) 
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Flgure 12. The relationship of x-ray emission energies to UPS ionization 
energies. 

where \k = +! is a single Slater determinant. As previously, 
we generate the configuration wave function $!; ’ by removing 
the electron which is in the orbital (ok of I),”. The wave function 
$!;I is not an eigenfunction of the cationic Hamiltonian, %$-I. 

However, it can be expanded in terms of the complete set48 of 
eigenfunctions, {\k:-’], of %$-’. Thus, we find 

+!;’ = \kY-’c/k (109) 

jJfpp;-l = p$l\ky-l (1 10) 

I 

where 

The probability of finding the cationic system in one of its 
eigenstates \kN-l when an electron is ionized out of the orbital - 
(Pk of the parent N-electron system is49 

Pk-l a c:k 

Therefore, the orbital energy Ck is 

-ck = I IElc:k/Z I c:k 

which, in turn, is simply the weighted ionization energy 

111) 

112) 

- c k  = Z lE////x / I  (1 13) 
I I 

where /, is the intensity of the ionization process IE,, and the 
summation runs over all cationic states which can be achieved 
by removal of an electron from the orbital (ok of +,” (i.e., over the 
main ionization event and all satellite “shake-up” and “shake- 
off” events). 50 

It is in this way that one retains the idea of ionization as a re- 
moval of an electron from one specific orbital. Although the 
processing of eq 113 might seem difficult, it turns out that it is 
quite simple in an experimental sense: The identification of the 
“main line”/“shake-up”/“shake-off” events is not too difficult 
even when orbital relaxation effects are large. 

2. Core Excitations 
The core excitations of an N-electron system are of two kinds: 

core - valence and core - Rydberg. The energies of these 
absorption events usually fall in the x-ray region. Subsequent 
to a core ionization event, the heavily excited (N  - 1)-electron 
system may decay by filling the core vacancy, emitting either 
an additional electron (Le., Auger effect) or a photon (i.e., x-ray 
emission). 

The intensities of an x-ray absorption or emission event can 
be used to obtain information on the LCAO coefficients of a 
valence orbital &, or, by means of the “equivalent core ap- 
proximation”, one can obtain information on molecular radicals 

8 I O  1 2  I 4  16 I8  20 

- I E  [ e v :  -- 

4 3 2 I 0 - I  - 2  - 3  - 4  - 5  - 6  - 7  - 8  -9 

+ E I X - R O Y )  [ e ~ ] -  

Figure 13. Photoelectron (top) and x-ray emission (bottom) spectra for 
vinylene thionocarbonate. The energy scale on the bottom spectrum 
is relative only. Intensity scales are linear. 

which cannot be ascertained by any other means. We will dis- 
cuss each of these in turn. 

a. Shapes of Valence Orbitals5’ 

The x-ray emission of the core-ionized cation can be dis- 
cussed as a transition from a core vacancy to a valence va- 
cancy 

+!;I - +!;I (1 14) 

The intensity of such a transition, as given by the electric-dipole 
approximation, is 

The two-center terms of eq 115 can be neglected with a fair 
degree of assurance, whereupon it reduces to a sum of one- 
center, atomic, transition moments for which, individually, the 
atomic g - u selection rules are valid. Thus, if we neglect the 
energy-dependent term, the x-ray emission intensities for a - 41s transition are proportional to the sum of the squares of 
the coefficients of the p AO’s in the LCAO expansion of &. That 
is 

~ C V  C C k I ( & I r I X k )  l 2  a C h  (116) 
k o n A  k on A 

k E  P 

where, according to Koopmans’ theorem, the orbitals 4; and 
Xk are those pertinent to the N-electron system. 

The process of a core ionization which is followed by x-ray 
emission of valence - core type, is shown on the left of Figure 
12. The final states achieved after the x-ray emission are 
Koopmans’ configurations of type #!;I. The process of valence 
ionization is shown on the right of Figure 12. The final states 
achieved are, again, Koopmans’ configurations $!;I. Hence, 
as should be obvious from Figure 12, the energy differences 
A€,,  AE2, and AE3 between the different x-ray emission lines 
should be equal to those of the corresponding UPS bands. These 
equalities between UPS data for the N-electron system and x-ray 
emission data for the N - 1 electron system, particularly when 
coupled with the stringent g/u atomic selection rule properties, 
provide a very powerful means of assigning UPS  band^.^'-^^ 

An example is provided by vinylene thionocarbonate. The 
photoelectron spectrum of this molecule is shown in Figure 13. 
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The first structure in the photoelectron spectrum between 8 and 
10 eV may represent one or two ionization events, relating to 
either the first 7~ orbital, r1, or the sulfur lone pair orbital, ns, or 
both of these. A decision between these three possibilities can 
be made on the basis of the sulfur KP spectrum: Appreciable 
KP intensity will appear only if the valence orbital (in which the 
final hole occurs) has a high contribution of sulfur 3p orbitals. 
The ns and the r1 valence orbitals satisfy this condition. The fact 
that there is only one strong peak in the x-ray emission spectrum 
suggests, therefore, that the photoelectron structure between 
8 and 10 eV corresponds to two ionization events. Placing either 
the irl or the ns ionization event near 11 eV (the second peak 
in the photoelectron spectrum) and the other near 9 eV would 
be expected to produce a very different type of x-ray spectrum. 
This conclusion has been verified by extended Huckel MO cal- 
c u l a t i o n ~ ~ ~  in conjunction with eq 116. 

A similar argument applies to the x-ray absorption spec- 
troscopy of the N-electron system. Thus, a study of l s A  - 
Rydberg transitions should provide some insight into the shape 
of Rydberg orbitals. 

b. Equivalent-Core Approach54 

The discussion of section a above assumes a complete ab- 
sence of relaxation effects. By way of contrast, it is electronic 
relaxation effects which provide the central motif of the equiv- 
alent-core approximation. 

Since the radius of an inner shell is small relative to the va- 
lence shell, it is thought that a Is hole on center A is fully 
equivalent to an increase of the atomic number of center A by 
one unit. The 1s hole is filled by adding an extra electron while, 
at the same time, the atomic number is increased from Z to Z 
4- 1 by adding an extra proton to the nucleus. Thus, the terminal 
orbitals of a 1s - nR excitation of CH, should be the same as 
those of an NH4 molecule. The relationships between the various 
states of CH4 and NH,, both Rydberg excited and core ionized, 
are shown in Figure 14. These relationships are self-evident. The 
more replete use of the equivalent core approach, as practiced 
by Schwarz5, to obtain information for radicals such as NH, . 
and PH;, is shown in Figure 15. 

3. Significance of Relaxation 

The viewpoints presented in sections 2.a and 2.b treat elec- 
tronic relaxation from two diagonally opposed points of view. 
In order to obtain approximate information for the shapes of 
valence orbitals, as in 2.b, we either neglect electronic relaxation 
effects or presume them to be small. The equivalent core ap- 
proach of 2.b, on the other hand, presumes the electronic re- 
laxation effects to be so large as to vindicate the replacement 
of atom C (which contains a core vacancy) by atom N (which 
contains no core vacancy). 

In addition to electronic relaxation effects, one must also be 
wary about the possibility of the relaxation of molecular geom- 
etry. This bears on the attitudes of sections 2.a and 2.b. 

(i) The core vacancy - valence vacancy transition observed 
in x-ray emission spectroscopy occurs near or at the equilibrium 
geometry of the core ionized species, say CH: (C 1s-l). Dif- 
ferences in the vertical transition energies (Figure 12), therefore, 
are slightly different from those observed in photoelectron 
spectroscopy, where the vertical transition energies refer to the 
equilibrium geometry of the neutral species. By the equivalent 
core approach, the geometry of CH: (C Is-') should be close 
to the geometry of NH:, which certainly is quite different from 
that of CH,. 

(ii) Differences between x-ray absorption peaks, say those 
of SiH,, are considered to be equal to the energy differences 
associated with excitations of the Z + 1 species, PH,. However, 
it is clear that this statement is correct only insofar as one gets 
information on the energy levels of PH; at the geometry of SiH4 

N H: 

A CORE I O N I Z A T I O N  E V E N T  

0 
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A R Y D E E R G  E X C I T A T I O N  

Figure 14. A diagram of a core ionization and a core - Rydberg ex- 
citation from the point of view of the equivalent core assumption. The 
atomic number, 6 or 7, is enclosed in a square, the C 1s or N 1s shell 
is denoted by the circle immediately adjacent to the square. The valence 
shell is denoted by the outermost solid circle. The Rydberg orbital is 
denoted by the dashed circle. 
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Figure 15. The relationship between various states of SiH4 and PH4 as 
obtained using the equivalent-core approximation. It is clear that one 
may use data for SiH4 to obtain information for a molecular radical 
PHI. 

(neutral), which again is quite different from the PH,. equilibrium 
geometry. 

These questions of relaxation, both electronic and geometric, 
would completely invalidate the attitudes of section 2, if carried 
to their extremes. Fortunately, the resolution attendant to x-ray 
studies has been quite limited, and these sorts of difficulties have 
not yet arisen. Resolution, however, is improving, and the future 
will certainly show significant discrepancies from the simple 
picture presented in section ll.A.2. 

D. Orbital Perspective 
We hope the reader will agree that we have been reasonably 

successful in describing a great variety of spectroscopic results 
within the confines of the MO concept. Indeed, it was clear from 
the outset that success would be ours: That, after all, is what we 
set out to achieve! Anyway, it seems clear that the MO concepts 
would not be so popular, if they were not also useful, and it is not 
surprising that we should concur in this conclusion. 

We hope, however, that our success has been of a slightly 
different turn. It was not ab initio obvious, we think, that we could 
provide a theoretical justification for the MO approach in all, or 
even many of the instances in which we have used it. The fact 
that we have been able to provide such justifications, regardless 
of how heuristic they might be, encourages us to delve further 
into the basis for MO success, past and future. This, we now 
proceed to do. 
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The basic desideratum in any discussion of electronic tran- 
sitions is to reduce the problem from one which involves two 
different states, each described by a (mu1ti)determinantal wave 
function, to one which involves one single set of orbitals. The 
ability to reduce the problem in such a way hinges on the twin 
difficulties of electron correlation and relaxation effects. The 
change of correlation energy between the two states must be 
small, and the relaxation effects must not be so large that they 
inhibit a one-to-one correspondence of the orbitals of one 
electronic state with those of the other. 

The use of terms such as “an electron is excited from one 
orbital to another” implies that the orbitals do not change much 
during the course of a transition. To the extent that such a 
statement is valid, it is implied that the orbitals in the two states 
are either identical or so similar that a knowledge of them in one 
state is adequate for the identification of them in another. In the 
same way, a great deal of experience indicates that the simi- 
larities between certain electronic states of quite different mo- 
lecular entities can be translated into a requirement for similarity 
at the orbital level. Thus, very simple (i.e., one-electron) per- 
turbation schemes can be used to describe the electronic states 
of one molecule in terms of those of another related mole- 
cule. 

We now synopsize some of the more pertinent theoretical 
characteristics of the MO approach. We do so in terms of one-, 
two-, and many-orbital properties. 

These consist of ionization energies 
and electron affinities. Both of these events can be described 
in terms of one single orbital energy. The theoretical justification 
for such a description is vested in Koopmans’ theorem. The 
second part of Koopmans’ theorem states that the canonical 
MO’s of the Kelectron system are also optimal (i.e., “good”) 
for the (N  - 1)-electron system. The experimental evidences, 
based on the near identity of IE, with -c, and on the general 
correctness of the selection rule for photoelectron spectroscopy, 
constitute the best “proof” of the orbital structure of both atoms 
and molecules. Not surprisingly, this “goodness” holds not only 
for the familiar valence orbitals, but also for the strongly coupled 
core orbitals. 

Two-Orbital Properties. These, for the most part, consist of 
electronic transitions. At best, these cannot be described by less 
than two orbitals. However, there exists no one set of optimal 
orbitals which is adequately descriptive of different excited 
states; configuration interaction must be considered from the 
outset. In addition to the nonexistence of a single set of orbitals 
which is “good” for a large number of different states, difficulties 
arise in connection with the degeneracies due to spatial and spin 
(i.e., permutational) symmetry. As a result of this unfortunate 
situation, computational and interpretational problems are rather 
severe in VIS, UV, and VUV spectroscopy. And, as a further 
consequence, the number of excited state assignments which 
meet with general accord are relatively few. In view of all these 
difficulties, we suggest that electronic spectra are best discussed 
within the “optimum excited state orbital” framework. These 
OES orbitals should be extremely useful for limited classes of 
transitions (Le., all those which arise by excitation from one fixed 
orbital). 

Many-Orbital Properties. These may include one-electron 
properties such as dipole moments or electron densities. They 
also include total energies. There is no specific reason to prefer 
any particular set of orbitals (e.g., canonical) in these instances. 
However, since it really does not matter14 which kind of orbitals 
one uses, the canonical set is just as good as any other Har- 
tree-Fock set. Although there is little or no theoretical reason 
to expect that a simple description of many-orbital properties 
should obtain, chemical ingenuity, by subsuming different 
physicochemical effects into one or a few parameters, has 
achieved a considerable simplicity even in these difficult 
areas. 

One-Orbital 

We conclude, therefore, that canonical MO’s are most ap- 
propriate for one-orbital properties, that OES MO’s may well be 
those of choice for two-orbital properties, and that any set of HF 
MO’s is just as good as any other for many-orbital properties. 
We also conclude that the basic MO idea (Le., the use of a single 
determinant to describe a many-electron wave function) is 
surprisingly excellent. 

111. Orbital Interaction 
We have been concerned, so far, with the MO description of 

electronic excitation and ionization events. We have emphasized 
those aspects for which the molecular orbital structure of the 
parent, ground-state, Kelectron system could be used to ad- 
vantage. We have established the approximations involved in 
this approach and have outlined its merits and demerits. Having 
come so far, we now wish to discuss the concept of chemical 
relatedness on an “exact” MO level. Our aim is to fit the many 
popular, and often very qualitative, ideas about molecular rela- 
tedness into a properly constructed theoretical niche. 

A. General Formalism for Orbital Interactions 
We will decompose a molecule AB into two bits, A and B, and 

we will try to use the information which is available for these bits 
in order to construct a description of the composite system, AB. 
It is obvious that such an attempt should lead, if successful, to 
some kind of perturbation approach. 

Let 3 be the Fock operator for AB, and TA and YB be those 
for the bits A and 6, respectively. Then 

3 = 3 A +  P+ T A B  (1 17) 

(1 18) 

where 
?AB = 3 - 3 A  - 3 8  

and where the sets {&), {@7} and (c#$’) are eigenfunctions of the 
Fock operators. 

3 A 4 4  = €.f‘l$4 (1 19) 

9%$7 = €747 (120) 

(121) 3 A B @  = AB AB 
c i  $ i  

We seek an expansion of the MO’s in terms of the MO sets 
($41 and ($$I. Such an expansion can be made exactly: Since 
the sets (44) and (47) are complete, the set 144) 8 ($7) = {((~.f‘, 
$7)) is also complete. Prior to obtaining an exact solution for the 

and in order to retain as much chemical pertinence as 
possible, we subdivide each of {$?} and I$$} into two subsets, 
one for occupied and one for unoccupied orbitals. The terms 
”occupied” and “unoccupied”, in turn, are defined relative to 
the ground configurations of the two bits A and B. 

The secular determinant, I F  - €SI = 0, is given in eq 122 
and is blocked according to the set subdivisions ($~n,c,i), {$&c,i), 

(&,occ,i},  and {$Ecc,i}. This determinant (eq 122) 

{b;nocc,il { d c c , i I  ($Ecc,iI I&nocc,iI 

{@;mcc,il I VI VI1 Vlll 

I&nocc,il VlllT VllaT VlaT IV 

{$$cc,iI VIT II V Vlla 
(&cc,iI VIP VT Ill Vla 

= 0 (122) 

is symmetric in the principal diagonal. 

in the following. 

element is 

The matrix elements which enter various blocks are typified 

Block I (or IV, by the interchange A - 6): A typical matrix 
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Block VIII: A typical matrix element is 

It will be noted that the matrix elements in blocks V and Vlll 
are identical with the Mulliken-Wolfsberg-Helmholtz expres- 
sion 

when K = 2 and when YAB is zero. The operator yAB will be 
small if the electron density of the composite system is merely 
a simple superposition of those of the bits A and B, (i.e., when 
$AB = Consequently, eq 130 is expected to hold best 
for nonpolar, weakly interacting systems. The operator YAB 
consists, minimally, of the kinetic energy operator which is 
contained in both YA and in 9' and which does not drop out upon 
forming YAB (eq 118). This identity provides a starting point for 
more elaborate equations for the off-diagonal elements.56 

B. Hierarchy of Approximations 
No approximations, beyond the MO approximation for A, B, 

and AB, have been made so far. Even the electron density in AB 
can be considered to be self-consistent because SA' = 9 - 
YA - Y6 refers to the final, best Fock operator. However, since 
it is our stated purpose to provide a good foundation for certain 
primitive MO concepts, we now investigate the approximations 
which must be introduced into the exact eq 122 in order to 
generate these primitive concepts. The general idea is to reduce 
the size of the secular determinant considerably, even to a 2 X 
2, if this be feasible (this, of course, is the gist of the frontier 
orbital theory, as developed by Fukui5'); and to neglect as many 
matrix elements as possible. The guidelines in any instance will 
be determined by the concept one wishes to extract. In general, 
one will extract the concept from eq 122 by retaining the mini- 
mum size of the determinant and neglecting the maximum 
number of elements. The eigenvalues may then be obtained 
either by matrix diagonalization or by perturbation theory. 

This procedure is the essence of all orbital interaction con- 
cepts. We now discuss several such concepts. We begin with 
the most drastic set of approximations. 

7. Ground-State Properties 
The ground state of AB can be related to those of A and B only 

if blocks VI, VII, Vla, and Vlla are small. In essence, this re- 
quirement implies that only small changes of the electron density 
distribution occur during the conjunction A + B - AB. As a re- 
sult, we will divide this section into two types of interactions: 
those that allow little or no change of electron distribution during 
the conjunction and those that permit a larger change. 

a. Interactions of the Occupied MO Subsets 

If the overlap of the subsets {4tcc,i] and ($:cc,i) is zero, the 
interactions of these two subsets will produce no change in the 
electron density distribution. In other words, the electron density 
distribution in AB will be a simple superposition of that for A and 
that for B. Thus, in the limit S = 0, these interactions are those 
for which the ground-state charge density distribution is an in- 
variant. 

By construction, we set blocks VI, VII, Vla, and Vlla equal to 
0. The individual MO's &:c,i may then be formed from the sets 
{4&l and {&cc,i]. In fact, we write 

$AB =   AB($^$') (131) 

where &AB, the residual antisymmetrizing operator, merely 
permutes the electrons in $A with those in $'. The only re- 
maining parts of the secular determinant of eq 122 are 

I(: II = O  
Consequently, the transformation to the canonical orbital set 
{4Ec,J is induced by the matrix elements of block V. 

This particular set of suppositions is known as the linear 
combination of bond orbitals (LCBO). 

The diagonal elements may be written 

The use of eq 134 and 135 implies a neglect of all inductive ef- 
f e c t ~ . ~ ~  The particular set which may be used (i-e., whether eq 
133 and 135, 133 and 136, etc.) is a matter of either taste or 
expediency. 

Finally, we presume that the major interactions can be con- 
fined to a few orbitals of subsets {4tcc,i] and {&c,ii. This sup- 
position leads to the listing of the orbital interaction concepts 
given in Table IX. The size of Table IX indicates that these con- 
cepts are quite plentiful. It is also obvious that some of them 
possess very graphic names. Nonetheless, all of them, regard- 
less of how superficially different they might appear, derive from 
eq 122 via the same set of approximations; they differ only in 
the orbital types which interact and all of them may or may not 
include inductive components. 

Therefore, we restrict ourselves here to the case of norborna- 
diene.66 Norbornane does not exhibit any sharp photoelectron 
bands, whereas norbornene displays one well-defined peak at 

Numerous examples are contained in the 
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TABLE IX. Various Types of Orbital Interaction Conceptssg 

Name A, B, . . , d c c ,  &c AB . . .  fp . . . Ref 

B conjugation ") ethylene x orbital on ethylene Butadiene x orbitals in butadiene 60 
B 

A, benzene q5A, x orbitals on benzene Aniline 
B, ammonia @, lone-pair orbital on 

ammonia 
Hyperconjugation A, benzene @A, x orbitals on benzene Toluene 

B, methane @, x-type orbital in methane 

x orbitals in aniline 61 

x orbitals in toluene 2c 

ethylene "1 x orbitals Norbornadiene x-type orbitals 62 
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Vlla). The primary effect is a mixing of the unoccupied orbitals 
of one bit with occupied orbitals of the other bit. 

Figure 16. "Through-bond'' interaction in norbornadiene. The numbers 
indicate the corresponding ionization potentials (in eV). 

9.0 eV, which is assigned as /(K). The value of I(K) for ethylene2a 
is 10.5 eV, the 1.5-eV shift to norbornene being in line with al- 
kylation and ring-closure effects. The introduction of a second 
double bond yields norbornadiene, which exhibits two well- 
defined bands at 8.7 and 9.6 eV. The 0.9-eV splitting is usually 
attributed to "through-space''  interaction^.^^,^^ The norbor- 
nane-norbornadiene situation is diagrammed in Figure 16. This 
demonstrates several important points: (a) the attitude works, 
but it works best for selected orbitals, namely those which are 
either highly atomic (localized or lone pair) or well-separated 
from all others; (b) the choice of the bits A and B is not well de- 
fined (if one chose ethylene as the basic unit, the diagram of 
Figure 16 would look much less convincing); (c) the splitting is 
not symmetrical (consequently, the full problem of eq 122 is only 
approximately reducible to a 2 by 2 matrix). 

b. Interactions of Occupied and Unoccupied MO's 
The primary interactions, in this instance, occur between 

(@cc,i) with {$~nocc,i), where M E (A,B]. Such interactions, even 
when the overlaps ($(&I I#&~,~) = 0, lead to a change of the 
electron density distribution in AB. In other words, even in the 
limit of no overlap, the electron density distribution in AB is not 
a simple superposition of that of A and that of B. 

Two extreme cases arise within the orbital interaction clas- 
sification scheme. These are the following. 

Polarization.53s67 The polarization of the electron distribution 
within subsystem A (or B) is achieved by considering the matrix 
elements of block VI (or Vla). The primary effect is a mixing of 
the unoccupied orbitals on one bit with occupied orbitals on the 
same bit. 

Charge Transfer.68 Charge transfer from A to B (or vice versa) 
is achieved by inclusion of the matrix elements of block VI1 (or 

2. Excited-State Properties 
The number of excited states which are possible in a molecule 

AB is very much larger than the sum of those for the bits A and 
B separately. As a result, the ability to enumerate and/or classify 
such states on an MO interaction model would be of considerable 
value. Unfortunately, this does not appear to be entirely possi- 
ble. 

As pointed out in section ll.A.5, the description of an excited 
state in the MO format is, with some exceptions, usually wrong 
and always inaccurate. Rydberg states may well constitute ex- 
ceptions. Unfortunately, our knowledge of molecular Rydberg 
states is not massive; in fact, it is so poor that the phenomena 
which might be interpreted along MO lines have not yet been 
elaborated experimentally. 

In any event, the MO description of excited states will not be 
as successful as was that for the ground state. Nonetheless, we 
propose to undertake such a description. In order to evade gross 
over-simplification and error, we restrict our considerations to 
weak interactions (Le., ones for which all off-diagonal blocks 
of eq 122 are small relative to blocks I, II, Ill, and IV). Strong in- 
teractions imply the inability to compare an MO of AB, other than 
formally, with those pertinent to either A or B. 

We now enumerate various types of excited states and the 
manner in which they relate to eq 122. 

Locally Excited States. This class of states consists of excited 
electronic states of AB which are not very different from those 
of fragment A (or fragment B). Thus, even in the composite 
molecule, they may be described as q5:cc,i - &,,occ,i. In the 
simplest basis, the transition energy difference caused by the 
incorporation of A into AB is 

This involves consideration of blocks I and II only. 
This empirical classification is quite large. Examples run the 

gamut from the 4600-A absorption band of l2 in various aro- 
matic-iodine complexes,69 to the effect of solvent-solute ad- 
ducts on the excited states of solute The 4600-A band 
of l2 is shown in Figure 17. The l2 forms charge-transfer com- 
plexes, I2.solvent, in the media shown in Figure 17. The energy 
of the charge-transfer band is quite variable whereas that of the 
4600-A band is subject only to relatively minor variations. The 
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Figure 17. Absorption spectrum of iodine in various solvents. The 
transition 4000-5000 A range is- characteristic of monomer 12. The 
transition which lies below 3500 A and whose energy is quite variable 
is the charge-transfer absorption of the I2.solvent CT complex. This 
figure is adapted from J. D. Boggus, M.S. Thesis, Florida State Uni- 
versity, 1976. 

12.CC14 adduct is very unstable and, while it is often considered 
to represent a charge-transfer complex, it is best to treat it as 
a solvent-solute complex of undetermined nature and stoichi- 
ometry. 

Charge-Transfer Excited S t a t e ~ . ~ ~ - ~ l  This class consists of 
excited states of AB which may be categorized as &c,i - 
&nocc,j. This class is dependent, for its existence, on the pres- 
ence of AB and does not occur in either A or B separately. It is 
a welldefined class only if c#&c,i and &nnocc,j do not change much 
when the composite AB is formed. If no change occurs, we 
find 

which, by Koopmans’ theorem, is 

EcT = -EAB + IEA + C (139) 

where C contains all remaining terms, particularly those which 
are coulombic. 

This empirical classification is very large. Extensive examples 
are available in Mulliken and Person.69 This categorization also 
includes “charge transfer to solvent” or CTTS states.69 All 
evolve from the truncated secular equation 

The potential energy curves for the ground and CT excited 
state of a charge-transfer complex are shown in Figure 18. The 
ground state has a small but finite stabilization energy which is 
greater than kTo. The excited state, relative to dissociation into 
A+ and B-, possesses considerable stabilization energy. The 
charge-transfer absorption band of certain l2 complexes is also 
shown in Figure 17. 

When a composite molecule is built from two (nearly) identical 
bits A and B, one immediately runs into problems concerned with 
approximate spatial degeneracy, as discussed in section ll.A.5.c. 
For example, in the charge-transfer case, the description 4,”,c,i 
+ &,occ,j is no longer unique; the (almost) equally probable 
situation &c,i - c#&occ,j must have (nearly) equal weight in any 
final description of the charge-transfer transition. However, in 
the most simple cases, one can still reduce the description to 
separate interactions which occur solely within the occupied 
and solely within the unoccupied MO subsets of the two bits. We 
will now discuss two such cases. 

Rydberg States of Composite Systems. Although such an 

Figure 18. Schematic potential energy diagram (upper) for two states 
of a charge-transfer complex formed between an acid A and a base B. 
The ionization potential of the acid (i.e., donor) is denoted IA and the 
electron affinity of the base (i.e., acceptor) is denoted EB. The ground 
state AB is slightly stable and the resultant CT absorption spectrum of 
the AB species, which we may approximately denote AB AfB-, is 
shown in the lower diagram. This diagram is adapted from R. S. Mulliken, 
J. Am. Chem. SOC., 74, 811 (1952). 

approach is fairly alien to Rydberg spectroscopy, the orbital 
interaction picture can be extended to systems containing two 
identical Rydberg chromophores. The energy of a Rydberg 
transition, under these conditions, is given by 

hvAB = lEAB 4- i k  + A€ (141) 

where, from blocks I, IV, and Vlll of eq 122 

A€ = (&I BE + YABI 4;)  

and where the overlap integral is 

f (1 f S)-’[2ZtS -I- (& lyABI&) ]  (142) 

s = ($4143 (143) 

In addition, using blocks II, Ill, and V, the ionization energy of the 
composite system can be related to those of the bits A and B. 
This approach has been used to discuss the energies, dipole 
selection rules, and lengths of certain Rydberg series in the 
cu-di~arbonyls.~~ 

Excimer States. 73-75 Excimer states are stable excited states 
of a dimer, A;, which is dissociative in its ground state, A2. The 
idea of an excimer is exemplified in Figure 19. If A # B, the 
associated excited state entity (AB)* is known ,as an “exci- 
p l e ~ ” . ~ ~  If A = B and if the excited state entity A,, is part of an 
ordered structure in which n is very large, the entity A): is known 
as an “exciton”.77 Exciplexes are of common occurrence in 
photoexcited solutions. Excitons provide a simple description 
of the excited states of molecular crystals.78 

As is already obvious from our language, the discussion of 
excited states of a molecule AB in terms of those of the bits A 
and B is usually processed in valence bond (VB) language.78 
Thus, M ~ l l i k e n , ~ ~  in his discussion of charge-transfer complexes, 
introduces electron configurations with names such as “no- 
bond”, “locally-excited”, “charge transfer”, and “retro-charge 
transfer”. Thereafter, he describes the electronic states of such 
complexes on the basis of a configuration mixing among these 
various electron structures (i.e., no-bond, charge transfer, etc.). 
A similar situation prevails in almost all discussions of  ex- 
cited-state properties of composites AB. In fact, the status of 
this whole area is peculiar: the interaction concepts are best 
elaborated on a VB basis whereas computations are best pro- 
secuted on a “super-molecule” (i.e., AB) MO basis. 

Unfortunately, the relation of the MO results to the VB con- 
cepts is rarely straightforward. In fact, it usually devolves on an 
analysis of one set of results, namely the MO computations, in 
terms of the concepts of the other, namely the VB, in order to 
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Figure 19. A schematic potential energy diagram (upper) for an excimer. 
These curves describe the energetics of approach of two A molecules, 
say two naphthalene molecules (in which case fAA is the interplanar 
distance as the two naphthalenes approach along a joint D2h symmetry 
axis). The excited monomer is denoted A'. The monomer emission is 
A' - A and the excimer emission is AA' - 2A. The ground state is 
repulsive and the excited state is attractive. A schematic emission 
spectrum (lower) of a system which forms excimers and for which both 
the monomer M and the excimer E are emissive. The monomer emis- 
sion, as shown, possesses vibronic structure. This diagram is adapted 
from B. Stevens and M. I. Ban, Trans. faraday Soc., 60, 1515 
(1  964). 

validate the preconceptions of the latter. 
In order to put our finger on the difficulties that arise, we will 

now process a simple model within both the valence bond and 
molecular orbital frameworks. Our model system contains two 
bits A and 6,  and each bit contains just one electron. We neglect 
both overlap and spin. The orbital basis consists of only one 
occupied and one unoccupied orbital for each of the bits A and 
6. 

Valence Bond Approach. The most simple description of 
ground and excited states is given by the following set of de- 
terminants: 

$0 = I 4:cc4:cc1 (144) 

$BA- = I &nocc&ccI (1 45a) 

$AB* = I ~ ~ c c & ~ o c c I  (145b) 

$BB- = I &nocc4kc I  (14%) 

$AA. = I4tcc4:noccl (1 45d) 

where q0 represents the ground states; $AA* and $BB* represent 
charge-transfer and $AB* and $BAS locally excited states. For 
obvious reasons, the locally excited configurations are consid- 
ered to be nonpolar, and the charge-transfer configurations are 
considered to be polar. If the two bits are identical, one is forced 
to take linear combinations of the two locally excited and the two 
charge-transfer configurations. Excimer states, for instance, may 
be described by 

** = 2-"2($BA. f $AB.) (146) 

Molecular Orbital Approach. The simple MO approach to the 
same problem starts with the set of symmetry-adapted func- 
tions 

(1 47a) 

(147b) 

(147c) 

(1 47d) 

Ground and excited states are now described by 

(1 48) 

$1 = I$$*B$!B/ ( 149a) 

$2 = I @ # 2 * B *  I (149b) 

$3 = I 4 A ' B ' f # q  (1 49c) 

(1 49d) $ 4 =  I4+4+ I 
The ground configuration is identical with that of the VB format.14 
The excited configurations, however, represent linear combi- 
nations of VB configurations, namely 

AB AB 
$0 = I @ +  4- I 

AB A'B' 

I 
$4 = -$$AA* - $BB* + $AB* - $BA.) (150d) 

The set of MO configurations $1, . . . $41 obviously spans 
the same space as the set of VB configurations (q0, $An*, $Be*, 

$AB., $BA*]. Each singly excited MO configuration, however, 
contains 50% polar (charge-transfer) and 50% nonpolar (locally 
excited) character, whereas the configurations of the VB set are 
either 100% nonpolar or 100% polar. 

Unfortunately, the actual states probably cover the full range 
from 100% polar to 100% locally excited. Generally, neither 
the simplistic MO nor the simplistic VB approach (which uses 
only one configuration function) will give an adequate picture, 
and one is forced to use a multideterminantal description. This 
requirement, of course, can be traced back to the nonexistence 
of a Koopmans' theorem for electron excitation, as discussed 
in sections ll.A.5.a and c. 

A case for which the matrix elements of blocks V, VI, and Vlll 
are of importance is provided by the n - ire transitions of te- 
tramethylcyclobutane-1,3-dione (TMCBD). The splitting of the 
no orbitals is 0.53 pm-' (PES), that of the x *  orbitals is 0.05 
pm-' (CNDO), and the four observed n - ir* singlet states 
cover a range of 0.9 pm-l (VIS, UV). The absoption spectrum 
is shown in Figure 20. The apparent complexity of this situation 
can be attributed to configuration interaction, mainly within the 
n - ir' manifold, and to deficiencies of the CNDO algorithm. 
In any event, instead of a single n - x "  transition (cf. the 2700-A 
transition of acetone), one expects and observes four n - ir* 
transitions in TMCBD. The origin of these four n -+ ir' transitions 
is schematized on an MO basis in Figure 21. We hope, by this 
example, to have fleshed out the abstract conclusions of section 
ll.A.5 in a more relevant frame of reference. 

C. Realm, Merits, and Limits 
The orbital interaction picture is an especially good approx- 

imation when the experimental data are ionization energies (such 
energies, via Koopmans' theorem, refer directly to orbital 
energies); one of the off-diagonal elements is very large com- 
pared to all others; one or two of the orbital energies of both A 
and B are well separated from the remainder (if these bunched 
MO'S are the ones which interact, the influence of the other 
orbitals will be small because of the large energy denominators 
which will occur in the perturbation theory expressions); high 
symmetry prevails (this forces a lot of matrix elements to zero); 
the experimental information is incomplete! (Lacking sufficient 
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Figure 20. The absorption spectrum of TMCBD (thin polycrystalline film) 
at 77 K. Four n - 7r* transitions are observed in the region 3700-2600 
A. These are shown individually and tentative vibronic analyses are 
schematized for three of them. This spectrum is taken from work by 
P. Brint (LSU, unpublished). 

information, one can subsume all kinds of unknown interactions 
into one or two types and parameterize accordingly.) 

The success of the orbital interaction approach is well doc- 
umented in the literature, and it accounts for the popularity of 
both photoelectron spectroscopy and the application of MO 
theory to chemistry. 

Total electronic energies, however, involve summations over 
all the occupied orbitals, and it is difficult to see how such total 
energies can be decomposed into one or even a few crucial 
orbital contributions. Hence, the orbital interaction concepts are 
best relegated to discussions of phenomena which can be pur- 
sued, with some force of logic, at the orbital level (e.g., PES). 
Such concepts, when applied to total energies or excited state 
properties, must be processed warily because the necessary 
logic apparatus (i.e., Koopmans' theorem) does not exist. 

The formal description of orbital interactions is clear-cut and 
simple. The difficulty (or the art) of application of the orbital in- 
teraction concepts to an actual problem lies, on the one hand, 
in the definition of the parent systems and, on the other hand, 
in the definition of the interaction operator, YAB. Our definition 
of YAB, as given in eq 118, requires a knowledge of the Fock 
operators for the bits as well as the composite system. This, in 
turn, implies a knowledge of the electron distributions in all three 
of A, B, and AB. Once these distributions are known, calculation 
of the orbital energies is straightforward. 

The primary virtue of orbital interaction concepts, apart from 
their simplicity, lies in the arbitrariness of the  definition^'^ of 
YB, and YAB. Thus, it is not unusual that the only information 
which can be deduced from experiment consists of the types 
and, perhaps, the magnitudes of several of the matrix elements. 
Although some consistency can be achieved with respect to 
certain definitions (e.g., the choice of YA and YB) and with re- 
spect to the empirical values of certain of the interaction matrix 
elements, the significance of either the axiomatic or the nu- 
merical precision will usually be severely limited.60 First, the MO 
concept is inherently approximate; for example, electronic re- 
laxation and correlation effects are not properly taken care of 

Figure 21. The n and 7r* MO's of acetone (left) and TMCBD (right), in- 
dicating the reasons for the four expected n - 7r+ transitions of the 
latter. 

even in the case of ionization energies. These approximations 
are of such a nature that they have different effects on different 
parameters, as witness the fact that the value of the same pa- 
rameter deduced from different types of experimental data can 
vary quite widely. Secondly, the set of approximations involved 
in the evolution of the orbital interaction classification (i.e., ne- 
glect of specific matrix elements; the choice of $A, @, and $AB; 

etc.) is not unique. Consequently, the numerical values of the 
"same" parameter deduced by different authors from the same 
data set are liable to differ considerably. Despite all of this, it is 
nonetheless true that the orbital interaction scheme has proven 
invaluable in the development, application, and analysis of both 
semiempirical and nonempirical MO calculations. 

We have worked implicitly and explicitly at the Hartree-Fock 
level. Since the errors inherent in the MO approximation may 
be very large compared to the difference between Hartree-Fock 
and "near-Hartree-Fock" calculations, we see little sense in 
the search for a perfect numerics. Thus, minimal basis set ab 
initio or semiempirical MO calculations have been and will re- 
main extremely useful. The success of the semiempirical 
schemes is attributable to two factors. First, it is due to the 
nonpolar nature of the general run of molecules which has been 
considered. This nonpolarity guarantees that a Mulliken- 
Wolfsberg-Helmholtz type of approximation should be rea- 
sonably correct. Secondly, it is due to the unspecified nature of 
the basis set. These two factors imply that all semiempirical MO 
methods, despite their apparently numerical nature, rest on 
precisely the same foundations as the orbital interaction con- 
cepts. 

IV. Conclusion 
Quantum chemistry is faced with two fundamental problems: 

how to reduce chemistry, in a practical way, to numerics; and 
how to avoid doing so and still benefit from theory. We have 
spoken to the latter problem in this article. The situation with 
respect to the former is in considerable flux because of the in- 
creasing sophistication of computers and programs. 

The axiomatic foundations of MO theory are well settled. Al- 
though different semiempirical MO versions will come and go 
and new types of orbital interactions will be advanced, it is 
doubtful that the MO concepts will alter radically. There is a 
possibility, however, that the MO terminology will be supple- 
mented, improved, or even replaced by concepts originating in 
atomic, solid-state, and nuclear physics. The impact of some 
such concepts on chemistry has already been investigated, and 
we feel it imperative to mention a few of the more important of 
them. 
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X a  Calculations.81 These calculations use an approximation 
for the exchange integral which is of the form 

Vx,f( 1) = -6a [3/4*1 ' I 3  [ p t (  1 11 ' I 3  (151) 

where p t  is the electron density for "spin-up'' and a is a pa- 
rameter which is adjustable within the limits l I a I 2/3. The 
"muffin tin" approximation, which describes the individual atom 
regions as regions of spherical potential, is used heavily. The 
impact on chemistry may be a replacement, or a modification 
of the LCAO format as we presently know it. 

Pseudopotentiai Theory.82 The pseudopotential idea permits 
an exact treatment of one or a few electrons which move in a 
potential provided by all the other electrons and the nuclei. It 
promises to be an exceedingly powerful approach for loosely 
bound electrons (e.g., electrons in Rydberg states). It provides 
a simple means of evading the many problems which arise when 
dealing with large numbers of core electrons as, for example, 
in heavy-metal compounds. Since it is the core electrons which 
furnish most of the electronic energy of such compounds, the 
pseudopotential theory, by including them in the potential term, 
enables one to focus more precisely on the small energy dif- 
ferences associated with the valence states. 

Second-Quantization and Green's Function Method.83,a4 
There is reason to expect that new concepts will arise either 
from the diagrammatic or from the propagator approaches. The 
main difficulty, for the time being, resides in their unfamiliarity 
to chemists. 

Relativistic Calculations. Truly relativistic calculations are 
still rare for molecules. There is reason to expect that such 
calculations will have a considerable impact on heavy-metal 
chemistry. 

We have concentrated on the MO idea: on how to describe 
the motion of an electron in the average field of a complicated 
system; on where the MO idea is valid and, hence, useful; and 
on where it breaks down. We admit that the MO idea fails nu- 
merically. Nevertheless, it has been the unifying approach in 
chemistry and molecular spectroscopy for the last 30 years. And 
it remains so today. We feel compelled to stress the centrality 
of Koopmans' theorem and the manner in which it allows us to 
attach a physical meaning to the concepts of orbitals and orbital 
energies. We also feel compelled to emphasize the practicality 
of orbital interaction concepts. Although no new types of physical 
interactions are introduced, (3, after all, contains terms only for 
kinetic and coulombic energies), it supplies a set of simple ideas 
which are qualitatively useful in an area where numerical efforts 
fare rather badly. 

In sum, we have justified the orbital description of ionization 
and excitation processes, irrespective of whether the electron 
is strongly coupled to one nucleus, (i.e., a core electron), loosely 
coupled to the whole molecule (i.e., a Rydberg electron), or 
moderately coupled to all atoms of the whole molecule (Le., a 
valence electron), The primary limitations are ones imposed by 
symmetry restrictions, space as well as spin, and by the very 
silly but very human endeaver to extract physical and numerical 
exactitude from an approximate theory. 
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